Skip to main content

Human Motor Cortex Excitatory–Inhibitory Neuronal Systems: Development and Cytoarchitecture

  • Chapter
  • First Online:
  • 2374 Accesses

Abstract

An essential feature of the mammalian cerebral cortex is the sequential establishment of excitatory–inhibitory neuronal assemblages between pyramidal and local-circuit inhibitory neurons. The recognition, location, and distribution of these excitatory–inhibitory neuronal assemblages are fundamental objectives in the study of the nervous system. They are recognized in all strata of the motor cortex. Most local-circuit interneurons recognized in the motor cortex are inhibitory in nature. Because, pyramidal cells represent roughly the 70% and the local-circuit interneurons the 30% of the motor cortex gray matter neurons, each inhibitory neuron establishes synaptic contacts with numerous pyramidal neurons. The excitatory pyramidal neurons are morphologically stable and functionally anchored to the first lamina. On the other hand, the inhibitory neurons are free, without first lamina attachment, capable of modifying their dendritic and axonic profiles as well as their spatial distribution in response to learned (acquired) new motor activities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andersen P, Eccles JC, Løyning Y (1963a) Recurrent inhibition in the hippocampus with identification of the inhibitory cells and its synapses. Nature 198:540–542

    Article  PubMed  CAS  Google Scholar 

  • Andersen P, Eccles JC, Voorhoeve PE (1963b) Inhibitory synapses on somas of purkinje cells in the cerebellum. Nature 199:655–665

    Article  PubMed  CAS  Google Scholar 

  • Blakemore C, Tobin EA (1972) Lateral inhibition between orientation detectors in the cat’s visual cortex. Exp Brain Res 15:439–440

    Article  PubMed  CAS  Google Scholar 

  • Cajal SyR (1893) Estructura asta de Ammon y fascia dentate. Anales de la Sociedad Española de Historia Natural 22:30–46

    Google Scholar 

  • Cajal SyR (1899) Estudios sobre la corteza cerebral humana Estructura de la corteza motriz del hombre y mamíferos. Revista Trimestral Micrográfica 4:117–200

    Google Scholar 

  • Cajal SyR (1911) Histologie du systéme nerveux de l’homme et des vertébrés, vol 2. Maloine, Paris

    Google Scholar 

  • Eccles JC (1964) The physiology of the synapses. Academic, New York

    Book  Google Scholar 

  • Fairen A, Valverde F (1980) A special type of neuron in the visual cortex of the cat: a Golgi and electron microscopic study of chandelier cells. J Comp Neurol 194:761–779

    Article  PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1977) Functional architecture of macaque monkey visual cortex. Proc R Soc Lond Ser B 189:1–59

    Article  Google Scholar 

  • Jones EG (1984) Laminar distribution of cortical efferent cells. In: Peters A, Jones EG (eds) Cerebral cortex, vol 1. Plenum Press, New York, pp 521–553

    Chapter  Google Scholar 

  • Jones EG, Hendry SH (1984) Basket cells. In: Peters A, Jones EG (eds) Cerebral cortex, vol 1. Plenum Press, New York, pp 309–336

    Chapter  Google Scholar 

  • Lewis DAT, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and Schizophrenia. Nat Rev Neurosci 6:312–324

    Article  PubMed  CAS  Google Scholar 

  • Lund JS (1981) ntrinsic organization of the primate visual cortex, area 17 as seem in Golgi preparations. In: Schmitt FO, Worden FG, Adelman G, Dennis SG (eds) Organization of the cerebral cortex. MIT Press, Cambridge, MA, pp 105–124

    Google Scholar 

  • Lund JS, Henry GH, Mac Queen CI, Harvey AR (1979) Anatomical organization of the primate visual cortex (area 17) of the cat: A comparison with area 17 of the macaque monkey. J Comp Neurol 148:599–618

    Article  Google Scholar 

  • Marín-Padilla M (1969) Origin of the pericellular baskets of the pyramidal neurons of the human motor cortex. Brain Res 14:633–646

    Article  PubMed  Google Scholar 

  • Marín-Padilla M (1970) Prenatal and early postnatal ontogenesis of the human motor cortex. A Golgi study. II. The basket pyramidal system. Brain Res 23:185–191

    Article  PubMed  Google Scholar 

  • Marín-Padilla M (1972) Double origin of the pericellular baskets of pyramidal neurons of the human motor cortex. A Golgi study. Brain Res 38:1–12

    Article  PubMed  Google Scholar 

  • Marín-Padilla M (1974) Three-dimensional reconstruction of the pericellular baskets of the motor (area 4) and visual (area 17) areas of the human cerebral cortex. Zeitschrift für Anatomie und Entwicklungeschichte 144:123–135

    Article  Google Scholar 

  • Marín-Padilla M (1984) Neurons of layer I. A developmental study. In: Peters A, Jones EG (eds) Cerebral cortex, vol 1. Plenum Press, New York, pp 447–478

    Google Scholar 

  • Marín-Padilla M (1987) The chandelier cell of the human visual cortex. A Golgi study. J Comp Neurol 265:61–70

    Article  Google Scholar 

  • Marín-Padilla M (1990) The pyramidal cell and its local-circuit interneurons: a hypothetical unit of the mammalian cerebral cortex. J Cognitive Neurosci 2:180–194

    Article  Google Scholar 

  • Marín-Padilla M, Stibitz G (1974) Three-dimensional reconstruction of the baskets of the human motor cortex. Brain Res 70:511–514

    Article  PubMed  Google Scholar 

  • Müller-Paschinger IB, Tömböl T, Petsche H (1983) Chandelier neurons within the rabbit cerebral cortex. A Golgi study. Anat Embryol 166:149–154

    Article  PubMed  Google Scholar 

  • Peters A (1984) Chandelier cells. In: Peters A, Jones EG (eds) Cerebral cortex, vol 1. Plenum Press, New York, pp 361–380

    Google Scholar 

  • Ramón-Molliner R, Nauta WJH (1966) The idiodendritic core of the brain stem neurons. J Comp Neurol 126:311–335

    Article  Google Scholar 

  • Somogyi P (1977) A specific ‘axo-axonic’ interneuron in the visual cortex of the rat. Brain Res 136:345–350

    Article  PubMed  CAS  Google Scholar 

  • Somogyi P (1979) An interneuron making synapses especially on the axon initial segment of pyramidal neurons in the cerebral cortex of the cat. J Physiol (Lond) 296:18–19

    Google Scholar 

  • Somogyi P, Freund TF, Cowey A (1982) The axo-axonic interneuron in the cerebral cortex of the cat, rat, and monkey. Neurosciences 7:2577–2609

    Article  CAS  Google Scholar 

  • Somogyi P, Cowey A (1984) Double bouquet cells. In: Peters A, Jones GE (eds) Cerebral cortex, vol 1. Plenum Press, New York, pp 337–358

    Google Scholar 

  • Szentágothai J (1965) The synapses of short local neurons in the cerebral cortex. Symp Biol Hungary 5:251–276

    Google Scholar 

  • Szentágothai J (1975) The “module concept” in the cerebral cortex architecture. Brain Res 95:475–496

    Article  PubMed  Google Scholar 

  • Szentágothai J (1978) The neuron network of the cerebral cortex: a functional interpretation. Proc R Soc Lond Ser B 201:219–248

    Article  Google Scholar 

  • Szentágothai J, Arbib MA (1974) Conceptual models of neural organization. Neurosci Res Prog Bull 12:383–286

    Google Scholar 

  • Tömböl T (1976) Golgi analysis of the internal layers (V–VI) of the cat visual cortex. Exp Brain Res 1:292–295

    Google Scholar 

  • Tömböl T (1978) Comparative data on Golgi architecture of interneurons of different cortical areas in the cat and rabbit. In: Brazier MAB, Petsche H (eds) Architectonics of the cerebral cortex. Raven Press, New York, pp 59–76

    Google Scholar 

  • Valverde F (1983) A comparative approach to neocortical organization based on the study of the brain of the hedgehog (Erinaceous europeus). In: Grisolia S, Guerry CC, Samson F, Norton S, Reinoso-Suarez F (eds) Ramón y Cajal contribution to neurosciences. Elsevier, Amsterdam, pp 149–170

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Marín-Padilla .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Marín-Padilla, M. (2011). Human Motor Cortex Excitatory–Inhibitory Neuronal Systems: Development and Cytoarchitecture. In: The Human Brain. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14724-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14724-1_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14723-4

  • Online ISBN: 978-3-642-14724-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics