Skip to main content

Activity-Aware Map: Identifying Human Daily Activity Pattern Using Mobile Phone Data

  • Conference paper
Human Behavior Understanding (HBU 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6219))

Included in the following conference series:

Abstract

Being able to understand dynamics of human mobility is essential for urban planning and transportation management. Besides geographic space, in this paper, we characterize mobility in a profile-based space (activity-aware map) that describes most probable activity associated with a specific area of space. This, in turn, allows us to capture the individual daily activity pattern and analyze the correlations among different people’s work area’s profile. Based on a large mobile phone data of nearly one million records of the users in the central Metro-Boston area, we find a strong correlation in daily activity patterns within the group of people who share a common work area’s profile. In addition, within the group itself, the similarity in activity patterns decreases as their work places become apart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Turner, M., Love, S., Howell, M.: Understanding emotions experienced when using a mobile phone in public: The social usability of mobile (cellular) telephones. Telemat. Inf. 25(3), 201–215 (2008)

    Article  Google Scholar 

  2. Nickerson, R.C., Isaac, H., Mak, B.: A multi-national study of attitudes about mobile phone use in social settings. Int. J. Mob. Commun. 6(5), 541–563 (2008)

    Article  Google Scholar 

  3. Liu, C.C.: Measuring and prioritising value of mobile phone usage. Int. J. Mob. Commun. 8(1), 41–52 (2010)

    Article  Google Scholar 

  4. Kauffman, R.J., Techatassanasoontorn, A.A.: International diffusion of digital mobile technology: A coupled-hazard state-based approach. Inf. Technol. and Management 6(2-3), 253–292 (2005)

    Article  Google Scholar 

  5. Giray, F., Gercek, A., Oguzlar, A., Tuzunturk, S.: The effects of taxation on mobile phones: a panel data approach. Int. J. Mob. Commun. 7(5), 594–613 (2009)

    Article  Google Scholar 

  6. Li, W., McQueen, R.J.: Barriers to mobile commerce adoption: an analysis framework for a country level perspective. Int. J. Mob. Commun. 6(2), 231–257 (2008)

    Article  Google Scholar 

  7. Eagle, N., Pentland, A.: Reality mining: sensing complex social systems. Personal and Ubiquitous Computing 10(4), 255–268 (2006)

    Article  Google Scholar 

  8. Eagle, N., Pentland, A.: Eigenbehaviors: Identifying structure in routine. Proc. Roy. Soc. A (2006) (in submission)

    Google Scholar 

  9. Eagle, N.: Machine perception and learning of complex social systems. Ph.D. Thesis, Program in Media Arts and Sciences, Massachusetts Institute of Technology (2005)

    Google Scholar 

  10. Clauset, A., Eagle, N.: Ersistence and periodicity in a dynamic proximity network. In: Proceedings of Discrete Mathematics and Theoretical Computer Science Workshop on Computational Methods for Dynamic Interaction Networks (2007)

    Google Scholar 

  11. Eagle, N., Pentland, A., Lazer, D.: Inferring social network structure using mobile phone data. PNAS (2007)

    Google Scholar 

  12. Phithakkitnukoon, S., Dantu, R.: Predicting calls — new service for an intelligent phone. In: Krishnaswamy, D., Pfeifer, T., Raz, D. (eds.) MMNS 2007. LNCS, vol. 4787, pp. 26–37. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Phithakkitnukoon, S., Dantu, R.: Cpl: Enhancing mobile phone functionality by call predicted list. In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part II. LNCS, vol. 5332, pp. 571–581. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Phithakkitnukoon, S., Dantu, R.: Mobile social group sizes and scaling ratio. AI & Society, Springer (2009)

    Google Scholar 

  15. Phithakkitnukoon, S., Dantu, R.: Mobile social closeness and similarity in calling patterns. In: IEEE Conference on Consumer Communications & Networking Conference (CCNC 2010), Special Session on Social Networking, SocNets (2010)

    Google Scholar 

  16. Azevedo, T.S., Bezerra, R.L., Campos, C.A.V., de Moraes, L.F.M.: An analysis of human mobility using real traces. In: WCNC 2009: Proceedings of the 2009 IEEE conference on Wireless Communications & Networking Conference, Piscataway, NJ, USA, pp. 2390–2395. IEEE Press, Los Alamitos (2009)

    Google Scholar 

  17. Lee, K., Hong, S., Kim, S.J., Rhee, I., Chong, S.: Slaw: A mobility model for human walks. In: Proceedings of the 28th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), Rio de Janeiro, Brazil. IEEE, Los Alamitos (April 2009)

    Google Scholar 

  18. Candia, J., Gonzalez, M.C., Wang, P., Schoenharl, T., Madey, G., Barabasi, A.: Uncovering individual and collective human dynamics from mobile phone records. Journal of Physics A: Mathematical and Theoretical 41(22), 1–16 (2008)

    Article  MathSciNet  Google Scholar 

  19. Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.L.: Understanding individual human mobility patterns. Nature 453(7196), 779–782 (2008)

    Article  Google Scholar 

  20. Song, C., Qu, Z., Blumm, N., Barabasi, A.L.: Limits of predictability in human mobility. Science 327(5968), 1018–1021 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rhee, I., Lee, K., Hong, S., Kim, S.J., Chong, S.: Demystifying the levy-walk nature of human walks. Technical report, NCSU (2008)

    Google Scholar 

  22. Airsage: Airsage wise technology, http://www.airsage.com

  23. Calabrese, F., Pereira, F.C., Lorenzo, G.D., Liu, L.: The geography of taste: analyzing cell-phone mobility and social events. In: Proceedings of IEEE Inter. Conf. on Pervasive Computing, PerComp. (2010)

    Google Scholar 

  24. pYsearch: Python APIs for Y! search services, http://pysearch.sourceforge.net/

  25. Geopy: A Geocoding Toolbox for Python, http://code.google.com/p/geopy/wiki/ReverseGeocoding

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Phithakkitnukoon, S., Horanont, T., Di Lorenzo, G., Shibasaki, R., Ratti, C. (2010). Activity-Aware Map: Identifying Human Daily Activity Pattern Using Mobile Phone Data. In: Salah, A.A., Gevers, T., Sebe, N., Vinciarelli, A. (eds) Human Behavior Understanding. HBU 2010. Lecture Notes in Computer Science, vol 6219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14715-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14715-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14714-2

  • Online ISBN: 978-3-642-14715-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics