Skip to main content

The Applications of Compressive Sensing to Radio Astronomy

  • Conference paper
  • 1140 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6221))

Abstract

Compressive sensing/sampling (CS) has been one of the most active research in signal and image processing since it was proposed. The importance of CS is that it provides a high performance sampling theory for sparse signals or signals with sparse representation. CS has shown outstanding performances in many applications. In this paper we discuss two potential applications of CS in radio astronomy: image deconvolution and Faraday rotation measure synthesis. Both theoretical analysis and experimental results show that CS will bring radio astronomy to a brand new stage.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wakin, M., Laska, J., Duarte, M., Baron, D.: An architecture for compressive imaging. In: International Conference on Image Processing (2006)

    Google Scholar 

  2. Lustig, M., Donoho, D., Pauly, J.: Sparse mri: The application of compressed sensing for rapid mr imaging. Magnetic Resonance in Medicine (2007)

    Google Scholar 

  3. Wagadarikar, A., John, R., Willett, R., Brady, D.: Single disperser design for coded aperture snapshot spectral imaging. Applied optics (2008)

    Google Scholar 

  4. Mishali, M., Eldar, Y.C., Dounaevsky, O., Shoshan, E.: Xampling: Analog to digital at sub-nyquist rates. eprint arXiv (2009)

    Google Scholar 

  5. Bobin, J., Starck, J.: Compressed sensing in astronomy and remote sensing: a data fusion perspective. In: Proceedings of SPIE (2009)

    Google Scholar 

  6. Wiaux, Y., Jacques, L., Puy, G., Scaife, A., Vandergheynst, P.: Compressed sensing imaging techniques for radio interferometry. arXiv astro-ph (2009)

    Google Scholar 

  7. Högbom, J.: Aperture synthesis with a non-regular distribution of interferometer baselines. Astronomy and Astrophysics Supplement 15, 417 (1974)

    Google Scholar 

  8. Wiaux, Y., Puy, G., Boursier, Y., Vandergheynst, P.: Spread spectrum for imaging techniques in radio interferometry. arXiv astro-ph (2009)

    Google Scholar 

  9. Starck, J., Fadili, J., Murtagh, F.: The undecimated wavelet decomposition and its reconstruction. IEEE Transactions on Image Processing 16, 297 (2007)

    Article  MathSciNet  Google Scholar 

  10. Candes, E., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. eprint arXiv, 9186 (2004)

    Google Scholar 

  11. Starck, J., Murtagh, F.: Astronomical image and data analysis. Springer, Heidelberg (2006)

    Book  MATH  Google Scholar 

  12. Cornwell, T.: Multi-scale clean deconvolution of radio synthesis images. arXiv astro-ph (2008)

    Google Scholar 

  13. Cornwell, T., Evans, K.: A simple maximum entropy deconvolution algorithm. Astronomy and Astrophysics 143, 77–83 (1985)

    Google Scholar 

  14. Heald, G.: The faraday rotation measure synthesis technique. Cosmic Magnetic Fields: From Planets 259, 591 (2009)

    Google Scholar 

  15. Brentjens, M., de Bruyn, A.: Faraday rotation measure synthesis. Astronomy and Astrophysics 441, 1217 (2005)

    Article  Google Scholar 

  16. Burn, B.: On the depolarization of discrete radio sources by faraday dispersion. Monthly Notices of the Royal Astronomical Society 133, 67 (1966)

    Article  Google Scholar 

  17. Frick, P., Sokoloff, D., Stepanov, R., Beck, R.: Wavelet-based faraday rotation measure synthesis. Monthly Notices of the Royal Astronomical Society: Letters 401, L24 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, F., Cornwell, T.J., De hoog, F. (2010). The Applications of Compressive Sensing to Radio Astronomy. In: Pandurangan, G., Anil Kumar, V.S., Ming, G., Liu, Y., Li, Y. (eds) Wireless Algorithms, Systems, and Applications. WASA 2010. Lecture Notes in Computer Science, vol 6221. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14654-1_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14654-1_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14653-4

  • Online ISBN: 978-3-642-14654-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics