Skip to main content

Biomechanik der prothetisch versorgten Hüfte

  • Chapter
  • First Online:
AE-Manual der Endoprothetik

Zusammenfassung

Hüftendoprothesen werden mit dem Ziel implantiert, die Schmerzfreiheit sowie eine sofortige und langfristige Stabilität zu gewährleisten. Ein Knochenverlust im Bereich des proximalen Femur ist ein regelmäßig auftretendes Phänomen nach Implantation von Hüfttotalendoprothesenstielen, was den Langzeiterfolg des operativen Eingriffs gefährdet. Es tritt bei allen Prothesensystemen und Materialkombinationen auf, die in der Hüftendoprothetik eingesetzt werden. Für einen periprothetischen Knochenverlust lassen sich in der Regel drei Gründe finden:

  1. 1.

    fremdkörperinduzierte Osteolysen,

  2. 2.

    ein Knochenabbau als Konsequenz der natürlichen Alterung,

  3. 3.

    Knochenverluste aufgrund einer biomechanischen Entlastung des Knochens, bedingt durch die Gestaltung, die Materialeigenschaften und die Oberflächencharakteristik der Implantate (Rubash et al. 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Akhavan S, Matthiesen MM, Schulte L et al (2006) Clinical and histologic results related to a low-modulus composite total hip replacement stem. J Bone Joint Surg Am 88:1308–1314

    Article  PubMed  Google Scholar 

  • Aldinger PR, Sabo D, Pritsch M et al (2003) Pattern of periprosthetic bone remodeling around stable uncemented tapered hip stems: a prospective 84-month follow-up study and a median 156-month cross-sectional study with DXA. Calcif Tissue Int 73:115–121

    Article  PubMed  CAS  Google Scholar 

  • Bobyn JD, Mortimer ES, Glassman AH et al (1992) Producing and avoiding stress shielding. Laboratory and clinical observations of noncemented total hip arthroplasty. Clin Orthop 274:79–96

    PubMed  Google Scholar 

  • Bugbee WD, Culpepper WJ 2nd, Engh CA Jr et al (1997) Long-term clinical consequences of stress-shielding after total hip arthroplasty without cement. J Bone Joint Surg Am 79:1007–1012

    PubMed  CAS  Google Scholar 

  • Campbell P, Shen FW, McKellop H (2004) Biologic and tribologic considerations of alternative bearing surfaces. Clin Orthop Relat Res 418:98–111

    Article  PubMed  Google Scholar 

  • Charnley J (1975) Fracture of femoral prostheses in total hip replacement. A clinical study. Clin Orthop Relat Res 111:105–120

    Article  PubMed  Google Scholar 

  • Cristofolini L (1997) A critical analysis of stress shielding evaluation of hip prostheses. Crit Rev Biomed Eng 25:409–483

    Article  PubMed  CAS  Google Scholar 

  • Decking R (2009) Lastübertragung zementfreier Hüftendoprothesenschäfte in-vitro und in-vivo. Univ.-Habilitations-Schrift, Ulm

    Google Scholar 

  • Draenert KD, Draenert YI, Krauspe R et al (2005) Strain adaptive bone remodelling in total joint replacement. Clin Orthop Relat Res 430:12–27

    Article  PubMed  Google Scholar 

  • Engh CA, Bobyn JD (1984) Biologic fixation of a modified Moore prosthesis. Part II. Evaluation of adaptive femoral bone modeling. Hip 110–132

    Google Scholar 

  • Engh CA, Bobyn JD (1988) The influence of stem size and extent of porous coating on femoral bone resorption after primary cementless hip arthroplasty. Clin Orthop Relat Res 231:7–28

    PubMed  Google Scholar 

  • Engh CA, Bobyn JD, Glassman AH (1987) Porous-coated hip replacement. The factors governing bone ingrowth, stress shielding, and clinical results. J Bone Joint Surg Br 69:45–55

    PubMed  CAS  Google Scholar 

  • Engh CA, O’Connor D, Jasty M et al (1992) Quantification of implant micromotion, strain shielding, and bone resorption with porous-coated anatomic medullary locking femoral prostheses. Clin Orthop 285:13–29

    PubMed  Google Scholar 

  • Engh CA Jr, Young AM, Engh CA Sr et al (2003) Clinical consequences of stress shielding after porous-coated total hip arthroplasty. Clin Orthop Relat Res 417:157–163

    Google Scholar 

  • Frost HM (2003) Bone’s mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol 275:1081–1101

    Article  PubMed  Google Scholar 

  • Gillies RM, Morberg PH, Bruce WJ et al (2002) The influence of design parameters on cortical strain distribution of a cementless titanium femoral stem. Med Eng Phys 24:109–114

    Article  PubMed  CAS  Google Scholar 

  • Glassman AH, Bobyn JD, Tanzer M (2006) New femoral designs: do they influence stress shielding? Clin Orthop Relat Res 453:64–74

    Article  PubMed  CAS  Google Scholar 

  • Grant P, Nordsletten L (2004) Total hip arthroplasty with the Lord prosthesis. A long-term follow-up study. J Bone Joint Surg Am 86-A:2636–2641

    PubMed  Google Scholar 

  • Grubl A, Chiari C, Gruber M et al (2002) Cementless total hip arthroplasty with a tapered, rectangular titanium stem and a threaded cup: a minimum ten-year follow-up. J Bone Joint Surg Am 84-A:425–431

    PubMed  Google Scholar 

  • Harris WH (2001) Wear and periprosthetic osteolysis: the problem. Clin Orthop Relat Res 393:66–70

    Article  PubMed  Google Scholar 

  • Huiskes R (2000) If bone is the answer, then what is the question? J Anat 197:145–156

    Article  PubMed  Google Scholar 

  • Joshi MG, Advani SG, Miller F et al (2000) Analysis of a femoral hip prosthesis designed to reduce stress shielding. J Biomech 33:1655–1662

    Article  PubMed  CAS  Google Scholar 

  • Kärrholm J, Anderberg C, Snorrason F et al (2002) Evaluation of a femoral stem with reduced stiffness. A randomized study with use of radiostereometry and bone densitometry. J Bone Joint Surg Am 84-A:1651–1658

    PubMed  Google Scholar 

  • Kärrholm J, Garellick G, Herberts P (2005) Annual Report 2005. Göteborg: Swedish National Hip Arthroplasty Register. Sahlgrenska University Hospital

    Google Scholar 

  • Leichtle UG, Leichtle CI, Schmidt B et al (2006) Peri-prosthetic bone density after implantation of a custom-made femoral component. A five-year follow-up. J Bone Joint Surg Br 88:467–471

    Article  PubMed  CAS  Google Scholar 

  • Martin RB (2000) Toward a unifying theory of bone remodeling. Bone 26:1–6

    Article  PubMed  CAS  Google Scholar 

  • Poss R (1992) Natural factors that affect the shape and strength of the aging human femur. Clin Orthop Relat Res 274:194–201

    PubMed  Google Scholar 

  • Pritchett JW (1995) Femoral bone loss following hip replacement. A comparative study. Clin Orthop Relat Res 314:156–161

    PubMed  Google Scholar 

  • Purdue PE, Koulouvaris P, Potter HG et al (2007) The cellular and molecular biology of periprosthetic osteolysis. Clin Orthop Relat Res 454:251–261

    Article  PubMed  Google Scholar 

  • Rubash HE, Sinha RK, Shanbhag AS et al (1998) Pathogenesis of bone loss after total hip arthroplasty. Orthop Clin North Am 29:173–186

    Article  PubMed  CAS  Google Scholar 

  • Sharkey PF, Parvizi J (2006) Alternative bearing surfaces in total hip arthroplasty. Instr Course Lect 55:177–184

    PubMed  Google Scholar 

  • Sumner DR, Turner TM, Igloria R et al (1998) Functional adaptation and ingrowth of bone vary as a function of hip implant stiffness. J Biomech 31:909–917

    Article  PubMed  CAS  Google Scholar 

  • Turner CH (1998) Three rules for bone adaptation to mechanical stimuli. Bone 23:399–407

    Article  PubMed  CAS  Google Scholar 

  • Turner AW, Gillies RM, Sekel R et al (2005) Computational bone remodelling simulations and comparisons with DEXA results. J Orthop Res 23:705–712

    Article  PubMed  CAS  Google Scholar 

  • Vanhoe H, Versieck J, Moens L et al (1995) Role of inductively coupled plasma mass spectrometry (ICP-MS) in the assessment of reference values for ultra-trace elements in human serum. Trace Elem Electrolytes 12:81–88

    CAS  Google Scholar 

  • Weinstein RS, Hutson MS (1987) Decreased trabecular width and increased trabecular spacing contribute to bone loss with aging. Bone 8:137–142

    Article  PubMed  CAS  Google Scholar 

  • Willert HG (1977) Reactions of the articular capsule to wear products of artificial joint prostheses. J Biomed Mater Res 11:157–164

    Article  PubMed  CAS  Google Scholar 

  • Wolff J (1892) Das Gesetz der Transformation der Knochen. Hirschwald, Berlin

    Google Scholar 

  • Yamaguchi K, Masuhara K, Ohzono K et al (2000) Evaluation of periprosthetic bone-remodeling after cementless total hip arthroplasty. The influence of the extent of porous coating. J Bone Joint Surg Am 82-A:1426–1431

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Decking .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Arbeitsgemeinschaft Endoprothetik

About this chapter

Cite this chapter

Decking, R., Claes, L. (2012). Biomechanik der prothetisch versorgten Hüfte. In: Claes, L., Kirschner, P., Perka, C., Rudert, M. (eds) AE-Manual der Endoprothetik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14646-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14646-6_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14645-9

  • Online ISBN: 978-3-642-14646-6

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics