Skip to main content

Earthworm Interactions with Soil Enzymes

  • Chapter
  • First Online:
Biology of Earthworms

Part of the book series: Soil Biology ((SOILBIOL,volume 24))

Abstract

As one of the dominant members of soil fauna, earthworms fulfill significant tasks in the soil ecosystem by participating in the physico-chemical processes of the soil, such as organic matter cycles, nutrient transformations, and modifications in soil structure. These processes are also directed by the activities and amounts of the enzymes produced by soil microorganisms that inhabit a wide range of soil environments including intestine systems, excretions, casts, and burrow linings of the earthworms. Therefore, microbial activity and the enzymes produced are considered to be closely related with earthworm life in soil. The purpose of this chapter is to describe the interactions between soil enzymes and earthworms at different levels in soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aina PO (1984) Contribution of earthworms to porosity and water infiltration in a tropical soil under forest and long-term cultivation. Pedobiologia 26:131–136

    Google Scholar 

  • Araujo Y, Lopez-Hernandez D (1999) Earthworm populations in a savannaagro forestry system of Venezuelan Amazonia. Biol Fertil Soils 29:413–418

    Article  Google Scholar 

  • Askin T, Kizilkaya R (2006) Assessing spatial variability of soil enzyme activities in pasture topsoils using geostatistics. Eur J Soil Biol 42:230–237

    Article  CAS  Google Scholar 

  • Bååth E (1989) Effects of heavy metals in soil on microbial processes and populations (a review). Water Air Soil Pollut 47:335–379

    Article  Google Scholar 

  • Banerjee MR, Burton DL, Depoe S (1997) Impact of sewage sludge application on soil biological characteristics. Agr Ecosyst Environ 66:241–249

    Article  Google Scholar 

  • Bauer C, Römbke J (1997) Factors influencing the toxicity of two pesticides on three lumbricid species in laboratory tests. Soil Biol Biochem 29:705–708

    Article  CAS  Google Scholar 

  • Beiderbeck VO, Campbell CA, Smith AE (1987) Effect of long term 2,4-D field application on soil biochemical processes. J Environ Qual 16:257–262

    Article  Google Scholar 

  • Benitez E, Nogales R, Elvira C, Masciandaro G, Ceccanti B (1999) Enzyme activities as indicators of the stabilization of sewage sludges composting with Eisenia foetida. Bioresour Technol 6:297–303

    Article  Google Scholar 

  • Brown GG, Barois I, Lavelle P (2000) Regulation of soil organic matter dynamics and microbial activity in the drilosphere and the role of interactions with other edaphic functional domains. Eur J Soil Biol 36:177–198

    Article  Google Scholar 

  • Burns RG (1978) Enzyme activity in soil: some theoretical and practical considerations. In: Burns RG (ed) Soil enzymes. Academic, New York, pp 295–340

    Google Scholar 

  • Butler JHA, Ladd JN (1969) The effect of methylation of humic acids and their influence on proteolytic enzyme activity. Aust J Soil Res 7:263–268

    Article  CAS  Google Scholar 

  • Cashel M, Freese E (1964) Excretion of alkaline phosphatase by Bacillus subtilis. Biochem Biophys Res Commun 16:541–544

    Article  CAS  PubMed  Google Scholar 

  • Ceccanti B, Nannipieri P, Cervelli S, Sequi P (1978) Fractionation of humus–urease complexes. Soil Biol Biochem 10:39–45

    Article  CAS  Google Scholar 

  • Chan KY (2001) An overview of some tillage impacts on earthworm population abundance and diversity – implications for functioning in soils. Soil Till Res 57:179–191

    Article  Google Scholar 

  • Chan KY, Heenan DP (1995) Occurrence of enchytraeid worms and some properties of their casts in an Australian soil under cropping. Aust J Soil Res 33:651–657

    Article  Google Scholar 

  • Conrad JP (1940) The nature of the catalyst causing the hydrolysis of urea in soils. Soil Sci 54:367–380

    Google Scholar 

  • Crawford DL, Lynch JM, Whipps JM, Ousley MA (1993) Isolation and characterization of actinomycete antagonists of a fungal root pathogen. Appl Environ Microbiol 59:3899–3905

    CAS  PubMed  Google Scholar 

  • Daniel O, Anderson JM (1992) Microbial biomass and activity in contrasting soil materials after passage through the gut of the earthworm Lumbricus rubellus Hoffmeister. Soil Biol Biochem 24:465–470

    Article  Google Scholar 

  • Decaens T, Rangel AF, Asakawa N, Thomas RJ (1999) Carbon and nitrogen dynamics in ageing earthworm casts in grasslands of the eastern plains of Colombia. Biol Fertil Soils 30:20–28

    Article  CAS  Google Scholar 

  • Dengiz O, Kizilkaya R, Gol C, Hepsen S (2007) Effects of different topographic positions on soil properties and soil enzymes activities. Asian J Chem 19:2295–2306

    CAS  Google Scholar 

  • Doelman P, Haanstra L (1979) Effect of lead on soil respiration and dehydrogenase activity. Soil Biol Biochem 11:475–479

    Article  CAS  Google Scholar 

  • Doube BM, Schmidt O, Killham K, Correll R (1997) Influence of mineral soil on the palatability of organic matter for lumbricid earthworms: a simple food preference study. Soil Biol Biochem 29:569–575

    Article  CAS  Google Scholar 

  • Edwards CA (1984) Changes in agricultural practice and their impact upon soil organisms. In: Jenkins D (ed) Proceedings of Symposium No. 13, The impact of agriculture on wildlife, agriculture and the environment, UK pp 46–65

    Google Scholar 

  • Edwards CA (1998) Earthworm ecology. St. Lucie, Boca Raton, pp 327–354

    Google Scholar 

  • Edwards CA, Bohlen PJ (1996) Earthworm ecology and biology. Chapman & Hall, London, pp 196–212

    Google Scholar 

  • Edwards CA, Lofty JR (1982a) The effect of direct drilling and minimal cultivation on earthworm populations. J Appl Ecol 19:723–724

    Article  Google Scholar 

  • Edwards CA, Lofty JR (1982b) Nitrogenous fertilizers and earthworm populations in agricultural soils. Soil Biol Biochem 14:515–521

    Article  Google Scholar 

  • Edwards CA, Thompson AR (1973) Pesticides and the soil fauna. Residue Rev 45:1–79

    CAS  PubMed  Google Scholar 

  • Ekberli Ä°, Kizilkaya R (2005) Microbial biomass carbon and basal soil respiration in soil affected by addition of different organic wastes and earthworm L. terrestris. Second Congress of Azerbaijan soil science society on soil resources their using and protection, 10–14 November 2005, Baku, Azerbaijan

    Google Scholar 

  • Ekberli Ä°, Kizilkaya R (2006) Catalase enzyme and its kinetic parameters in earthworm L. terrestris casts and surrounding soil. Asian J Chem 18:2321–2328

    CAS  Google Scholar 

  • Ekberli Ä°, Kizilkaya R, Kars N (2006) Urease enzyme and its kinetic and thermodynamic parameters in clay loam soil. Asian J Chem 18:3097–3105

    CAS  Google Scholar 

  • Estermann EF, McLaren AD (1961) Contribution of rhizoplane organisms to the total capacity of plants to utilize organic nutrients. Plant Soil 15:243–260

    Article  CAS  Google Scholar 

  • Flieβbach A, Martens R, Reber HH (1994) Soil microbial biomass and microbial activity in soil treated with heavy metal contaminated sewage sludge. Soil Biol Biochem 26:1201–1205

    Article  Google Scholar 

  • Frankenberger WT Jr, Tabatabai MA (1982) Amidase and urease activities in plants. Plant Soil 64:153–166

    Article  CAS  Google Scholar 

  • Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30:1389–1414

    Article  CAS  Google Scholar 

  • Goyal S, Dhull SK, Kapoor KK (2005) Chemical and biological changes during composting of different organic wastes and assessment of compost maturity. Bioresour Technol 96:1584–1591

    Article  CAS  PubMed  Google Scholar 

  • Guild WJMcL (1948) Studies on the relationship between earthworms and soil fertility III. The effect of soil type on the structure of earthworm populations. Ann Appl Biol 35:181–192

    Article  Google Scholar 

  • Haanstra L, Doelman P (1991) An ecological dose–response model approach to short and long-term effects of heavy metals on arylsulphatase activity in soil. Biol Fertil Soils 11:18–23

    Article  CAS  Google Scholar 

  • Haimi J, Huhta V, Boucelham M (1992) Growth increase of birch seedlings under the influence of earthworms – a laboratory study. Soil Biol Biochem 24:1525–1528

    Article  Google Scholar 

  • Heimbach F (1992) Correlation between data from laboratory and field tests for investigating the toxicity of pesticides to earthworms. Soil Biol Biochem 24:1749–1753

    Article  CAS  Google Scholar 

  • Heimbach F (1997) Field tests on the side effects of pesticides on earthworms: influence of plot size and cultivation practices. Soil Biol Biochem 29:671–676

    Article  CAS  Google Scholar 

  • Hubbard VC, Jordan D, Stecker JA (1999) Earthworm response to rotation and tillage in a Missouri claypan soil. Biol Fertil Soils 29:343–347

    Article  Google Scholar 

  • Jin K, Sleutel S, Buchan D, Neve SD, Cai DX, Gabriels D, Jin JY (2009) Changes of soil enzyme activities under different tillage practices in the Chinese Loess Plateau. Soil Till Res 104:115–120

    Article  Google Scholar 

  • Johnson-Maynard JL, Umiker KJ, Guy SO (2007) Earthworm dynamics and soil physical properties in the first three years of no-till management. Soil Till Res 94:338–345

    Article  Google Scholar 

  • Jordan D, JrF P, Hubbard VC (2003) Effects of soil compaction, forest leaf litter and nitrogen fertilizer on two oak species and microbial activity. Appl Soil Ecol 23:33–41

    Article  Google Scholar 

  • Joschko M, Diestel H, Larink O (1989) Assessment of earthworm burrowing efficiency in compacted soil with a combination of morphological and soil physical measurements. Biol Fertil Soils 8:191–196

    Article  Google Scholar 

  • Kandeler E, Palli S, Stemmer M, Gerzabek MH (1999) Tillage changes microbial biomass and enzyme activities in particle-size fractions of a Haplic Chernozem. Soil Biol Biochem 31:1253–1264

    Article  CAS  Google Scholar 

  • Karaca A, Haktanir K, Kizilkaya R (2000) The effect of lead and cadmium compounds on soil catalase enzyme activity. Proceedings of International symposium on desertification (ISD), 416–421, 13–17 June, 2000, Konya, Turkey

    Google Scholar 

  • Karaca A, Naseby D, Lynch J (2002) Effect of cadmium-contamination with sewage sludge and phosphate fertilizer amendments on soil enzyme activities, microbial structure and available cadmium. Biol Fertil Soil 35:435–440

    Article  CAS  Google Scholar 

  • Karaca A, Turgay C, Tamer N (2006) Effects of a humic deposit (Gyttja) on soil chemical and microbiological properties and heavy metal availability. Biol Fertil Soil 42:585–592

    Article  CAS  Google Scholar 

  • Karaca A, Kizilkaya R, Turgay OC, Cetin SC (2010a) Effects of earthworms on the availability and removal of heavy metals in soils. In: Sherameti I, Varma A (eds) Soil heavy metals, soil biology series, vol 19. Springer, Berlin, pp 369–388

    Chapter  Google Scholar 

  • Karaca A, Cetin SC, Turgay OC, Kizilkaya R (2010b) Effects of heavy metals on soil enzyme activities. In: Sherameti I, Varma A (eds) Soil heavy metals, soil biology, vol 19. Springer, Berlin, pp 237–262

    Chapter  Google Scholar 

  • Keogh RG, Christensen MJ (1976) Influence of passage through Lumbricus rubellus Hoffmeister earthworms on viability of Pithomyces chartarum (Berk. and Curt.) M.B. Ellis spores. NZ J Agric Res 19:255–256

    Google Scholar 

  • Khalaf El-Duweini A, Ghabbour SI (1965) Population density and biomass of earthworms in different types of Egyptian soils. J Appl Ecol 2:271–287

    Article  Google Scholar 

  • Killham K (1994) Soil ecology. Cambridge University Press, Cambridge, pp 141–150

    Google Scholar 

  • Kizilkaya R (2004) Cu and Zn accumulation in earthworm Lumbricus terrestris L. in sewage sludge amended soil and fractions of Cu and Zn in casts and surrounding soil. Ecol Eng 22:141–151

    Article  Google Scholar 

  • Kizilkaya R (2005) The role of different organic wastes on zinc bioaccumulation by earthworm Lumbricus terrestris L. (Oligochaeta) in successive Zn added soil. Ecol Eng 25:322–331

    Article  Google Scholar 

  • Kizilkaya R (2008) Dehydrogenase activity in Lumbricus terrestris casts and surrounding soil affected by addition of different organic wastes and Zn. Bioresour Technol 99:946–953

    Article  CAS  PubMed  Google Scholar 

  • Kizilkaya R, Askin T (2002) Influence of cadmium fractions on microbiological properties in Bafra plain soils. Arch Agron Soil Sci 48:263–272

    Article  CAS  Google Scholar 

  • Kizilkaya R, Bayrakli B (2005) Effects of N-enriched sewage sludge on soil enzyme activities. Appl Soil Ecol 30:192–202

    Article  Google Scholar 

  • Kizilkaya R, Ekberli Ä° (2008) Determination of the effects of hazelnut husk and tea waste treatments on urease enzyme activity and its kinetics in soil. Turk J Agric For 32:299–310

    CAS  Google Scholar 

  • Kizilkaya R, Hepsen S (2004) Effect of biosolid amendment on enzyme activities in earthworm (Lumbricus terrestris) casts. J Plant Nutr Soil Sci 167:202–208

    Article  CAS  Google Scholar 

  • Kizilkaya R, Hepsen S (2007) Microbiological properties in earthworm Lumbricus terrestris L. cast and surrounding soil amended with various organic wastes. Commun Soil Sci Plant Anal 38:2861–2876

    Article  CAS  Google Scholar 

  • Kizilkaya R, Askin T, Bayrakli B, Saglam M (2004) Microbiological characteristics of soils contaminated with heavy metals. Eur J Soil Biol 40:95–102

    Article  CAS  Google Scholar 

  • Kizilkaya R, Bayrakli F, Surucu A (2007a) Relationships between phosphatase activity and phosphorus fractions in agricultural soils. Int J Soil Sci 2:107–118

    Article  CAS  Google Scholar 

  • Kizilkaya R, Ekberli I, Kars N (2007b) Urease activity and its kinetics in soil treated with tobacco waste and wheat straw. Ankara Univ J Agric Sci 13:186–194

    Google Scholar 

  • Kizilkaya R, Hepsen S, Akca Ä°, Bayrakli B, Askin T, Turkmen C (2009) Determination of total and mobile Pb fractions during vermicomposting in sewage sludge. International Symposium on Environment. 20-23 May 2009. Kyrgyzstan – Turkey Manas Unıversity, Faculty of Engineering, Bishkek, Kyrgyz Rebublic

    Google Scholar 

  • Kladivko EJ, Mackay AD, Bradford JM (1986) Earthworms as a factor in the reduction of soil crusting. Soil Sci Soc Am J 50:191–196

    Article  Google Scholar 

  • Knight BP, McGrath MJ, Doran JW, Cline RG, Harris RF, Schuman GE (1997) Biomass carbon measurements and substrate utilization patterns of microbial populations from soils amended with cadmium, copper, or zinc. Appl Environ Microb 63:39–43

    CAS  Google Scholar 

  • Kooistra MJ (1991) A micromorphological approach to the interactions between soil structure and soil biota. Agric Ecosyst Environ 34:315–328

    Article  Google Scholar 

  • Ladd JN, Butler JAH (1975) Humus–enzyme systems and synthetic, organic polymer–enzyme analogs. Soil Biol Biochem 4:143–194

    CAS  Google Scholar 

  • Lavelle P, Spain AV (2001) Soil ecology. Chapman & Hall, London

    Google Scholar 

  • Le Bayon RC, Binet F (2006) Earthworms change the distribution and availability of phosphorous in organic substrates. Soil Biol Biochem 38:235–246

    Google Scholar 

  • Leroy BLM, Van den Bossche A, Neve SD, Reheul D, Moens M (2007) The quality of exogenous organic matter: short-term influence on earthworm abundance. Eur J Soil Biol 43:S196–S200

    Article  CAS  Google Scholar 

  • Leroy BLM, Schmidt O, Van den Bossche A, Reheul D, Moens M (2008) Earthworm population dynamics as influenced by the quality of exogenous organic matter. Pedobiologia 52:139–150

    Article  CAS  Google Scholar 

  • Lui SX, Xiong DZ, Wu DB (1991) Studies on the effect of earthworms on the fertility of red-arid soil. Advances in management and conservation of soil fauna, Proceedings of the 10th International Soil Zoology Colloquium, held at Bangalore, India, August 7–13

    Google Scholar 

  • Marininssen JCY, Hillenaar SI (1997) Earthworm-induced distribution of organic matter in macro-aggregates from differently managed arable fields. Soil Biol Biochem 29:391–395

    Article  Google Scholar 

  • Mawdsley JL, Burns RG (1994) Inoculation of plants with Flavobacterium P25 results in altered rhizosphere enzyme activities. Soil Biol Biochem 26:871–882

    Article  CAS  Google Scholar 

  • McLaren AD (1975) Soil as a system of humus and clay immobilized enzymes. Chem Screpta 8:97–99

    CAS  Google Scholar 

  • Mijangos I, Pérez R, Albizu I, Garbisu C (2006) Effects of fertilization and tillage on soil biological parameters. Enzyme Microl Technol 40:100–106

    Article  CAS  Google Scholar 

  • Morgan MH (1988) The role of microorganisms in the nutrition of Eisenia foetida. In: Edwards CA, Neuhauser EF (eds) Earthworms in waste and environmental management. SPB Academic Publishing, The Hague, pp 71–82

    Google Scholar 

  • Mulongoy K, Bedoret A (1989) Properties of worm casts and surface soils under various plant covers in the humid tropics. Soil Biol Biochem 21:197–203

    Article  Google Scholar 

  • Naseby DC, Lynch JM (2002) Enzymes and microorganisms in the rhizosphere. In: Burns RG, Dick RP (eds) Enzymes in the environment, activity, ecology and environment. Marcel Dekker Inc, New York, pp 109–125

    Google Scholar 

  • Niemi RM, Heiskanen I, Ahtiainen JH, Rahkonen A, Mäntykoski K, Welling L, Laitinen P, Ruuttunen P (2009) Microbial toxicity and impacts on soil enzyme activities of pesticides used in potato cultivation. Appl Soil Ecol 41:293–304

    Article  Google Scholar 

  • Nishimura S, Nomura M (1959) Ribonuclease of Bacillus subtilis. J Biochem 46:161–167

    CAS  Google Scholar 

  • Nordström S, Rundgren S (1974) Environmental factors and lumbricid associations in southern Sweden. Pedobiologia 14:1–27

    Google Scholar 

  • Parkin TB, Berry EC (1994) Nitrogen transformations associated with earthworm casts. Soil Biol Biochem 26:1233–1238

    Article  Google Scholar 

  • Pashanasi B, Lavelle P, Alegre J, Charpentier F (1996) Effect of the endogeic earthworm, Pontoscolex corethrurus on soil chemical characteristics and plant growth in a low-input tropical agroecosystem. Soil Biol Biochem 28:801–808

    Article  CAS  Google Scholar 

  • Reddell P, Spain AV (1991a) Earthworms as vectors of viable propagules of mycorrhizal fungi. Soil Biol Biochem 23:767–774

    Article  Google Scholar 

  • Reddell P, Spain AV (1991b) Transmission of infective Frankia (Actinomycetales) propagules in casts of the endogeic earthworm Pontoscolex corethrurus (Oligochaeta: Glossoscolecidae). Soil Biol Biochem 23:775–778

    Article  Google Scholar 

  • Ros M, Pascual JA, Garcia C, Hernandez MT, Insam H (2006) Hydrolase activities, microbial biomass and bacterial community in a soil after long-term amendment with different composts. Soil Biol Biochem 38:3443–3452

    Article  CAS  Google Scholar 

  • Rossi JP, Lavelle P, Albrecht A (1997) Relationships between spatial pattern of the endogeic earthworm Polypheretima elongata and soil heterogeneity. Soil Biol Biochem 29:485–488

    Article  CAS  Google Scholar 

  • Ruz-Jerez BE, Ball PR, Tillman RW (1992) Laboratory assessment of nutrient release from a pasture soil receiving grass or clover residues, in the presence or absence of Lumbricus rubellus or Eisenia foetida. Soil Biol Biochem 24:1529–1534

    Article  Google Scholar 

  • Sastre I, Vicente MA, Lobo MC (1996) Influence of the application of sewage sludges on soil microbial activity. Bioresource Technol 57:19–23

    Article  CAS  Google Scholar 

  • Satchell JE (1967) Lumbricidae. In: Burges A, Raw F (eds) Soil biology. Academic, London, pp 259–322

    Google Scholar 

  • Satchell JE, Martin K (1984) Phosphatase activity in earthworm faeces. Soil Biol Biochem 16:191–194

    Article  CAS  Google Scholar 

  • Scheu S (1987) Microbial activity and nutrient dynamics in earthworm casts (Lumbricidae). Biol Fertil Soils 3:230–234

    Google Scholar 

  • Scheu S (1991) Mucus excretion and carbon turnover of endogeic earthworms. Biol Fertil Soils 12:217–220

    Article  CAS  Google Scholar 

  • Scheu S, Parkinson D (1994) Effects of earthworms on nutrient dynamics, carbon turnover and microorganisms in soil from cool temperate forests on the Canadian Rocky Mountains-laboratory studies. Appl Soil Ecol 1:113–125

    Article  Google Scholar 

  • Schmidt O, Doube BM, Ryder MH, Killham K (1997) Population dynamics of Pseudomonas corrugata 2140R lux8 in earthworm food and in earthworm casts. Soil Biol Biochem 29:523–528

    Article  CAS  Google Scholar 

  • Schmidt O, Scrimgeour CM, Curry JP (1999) Carbon and nitrogen stable isotope ratios in body tissue and mucus of feeding and fasting earthworms (Lumbricus festivus). Oecologia 118:9–15

    Article  CAS  PubMed  Google Scholar 

  • Schonholzer F, Hahn D, Zeyer J (1999) Origins and fate of fungi and bacteria in the gut of Lumbricus terrestris L. studied by image analysis. FEMS Microbiol Ecol 28:235–248

    CAS  Google Scholar 

  • Sharpley AN, Syers JK (1976) Potential role of earthworm casts for the phosphorus enrichment of run-off waters. Soil Biol Biochem 8:341–346

    Article  CAS  Google Scholar 

  • Shaw C, Pawluk S (1986) Faecal microbiology of Octolasion tyrtaeum, Aporrectodea turgida and Lumbricus terrestris and its relation to the carbon budgets of three artificial soils. Pedobiologia 29:377–389

    Google Scholar 

  • Simonart P, Batistic L, Mayaudon J (1967) Isolation of protein from humic acid extracted from soil. Plant Soil 27:153–161

    Article  CAS  Google Scholar 

  • Springett JA (1983) Effect of five species of earthworm on some soil properties. J Appl Ecol 20:865–887

    Article  Google Scholar 

  • Stamatiadis S, Nerantzis ET, Giannakopoulou E, Maniatis LM (1994) The nutritive value of two species of microorganisms to the earthworm Eisenia fetida. Eur J Soil Biol 30:177–185

    Google Scholar 

  • Striganova BR, Marfenina OE, Ponomarenko VA (1989) Some aspects of the effect of earthworms on soil fungi. Biol Bull Acad Sci USSR 15:460–463

    Google Scholar 

  • Sylvestre GS, Fournier JC (1979) Effects of pesticides on the soil microflora. Adv Agron 31:63–72.

    Google Scholar 

  • Tabatabai MA, Dick WA (2002) Enzymes in soil: research and developments in measuring activities. In: Burns GR, Dick RP (eds) Enzymes in the environment, activity, ecology and environment. Marcel Dekker Inc, New York, pp 567–598

    Google Scholar 

  • Tam NFY, Wong YS (1990) Respiration studies on the decomposition of organic waste-amended colliery spoil. Agr Ecosyst Environ 32:25–38

    Article  Google Scholar 

  • Tarrant KA, Field SA, Langton SD, Hart ADM (1997) Effects on earthworm populations of reducing pesticide use in arable crop rotations. Soil Biol Biochem 29:657–661

    Article  CAS  Google Scholar 

  • Tiunov AV, Scheu S (1999) Microbial respiration, biomass, biovolume and nutrient status in burrow walls of Lumbricus terrestris L. (Lumbricidae). Soil Biol Biochem 31:2039–2048

    Article  CAS  Google Scholar 

  • Tiwari SC, Tiwari BK, Mishra RR (1989) Microbial populations, enzyme activities and nitrogen–phosphorus–potassium enrichment in earthworm casts and in the surrounding soil of a pineapple plantation. Biol Fertil Soils 8:178–182

    Article  Google Scholar 

  • Tomlin AD, McCabe D, Protz R (1992) Species composition and seasonal variation of earthworms and their effect on soil properties in southern Ontario, Canada. Soil Biol Biochem 24:1451–1457

    Article  Google Scholar 

  • Turgay OC, Erdogan EE, Karaca A (2010) Effect of humic deposit (leonardite) on degradation of semi-volatile and heavy hydrocarbons and soil quality in crude-oil-contaminated soil. Environ Monit Assess. doi:10.1007/s10661-009-1213-1

    PubMed  Google Scholar 

  • Weetall HH (1975) Immobilized enzymes and their application in the food and beverage industry. Process Biochem 10:3–24

    CAS  Google Scholar 

  • Weimberg R, Orton WL (1963) Repressible acid phosphomonoesterase and constitutive pyrophosphatase of Saccharomyces mellis. J Bacteriol 86:805–813

    CAS  PubMed  Google Scholar 

  • Weimberg R, Orton WL (1964) Evidence for an exocellular site for the acid phosphatase of Saccharomyces mellis. J Bacteriol 88:1743–1754

    CAS  PubMed  Google Scholar 

  • Wolter C, Scheu S (1999) Changes in bacterial numbers and hyphal lengths during the gut passage through Lumbricus terrestris (Lumbricidae, Oligochaeta). Pedobiologia 43:891–900

    Google Scholar 

  • Yakupoglu T, Hepsen S, Ozdemir N, Kizilkaya R (2007) The effects of various organic wastes applied into eroded soil on dehydrogenase enzyme activity. II. International Conference on Environmental, Industrial and Applied Microbiology (BioMicroWorld 2007), 28 November–1 December, Seville, Spain

    Google Scholar 

  • Zhang BG, Li GT, Shen TS, Wang JK, Sun Z (2000) Changes in microbial biomass C, N, and P and enzyme activities in soil incubated with the earthworms Metaphire guillelmi or Eisenia fetida. Soil Biol Biochem 32:2055–2062

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ridvan Kizilkaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Kizilkaya, R., Karaca, A., Turgay, O.C., Cetin, S.C. (2011). Earthworm Interactions with Soil Enzymes. In: Karaca, A. (eds) Biology of Earthworms. Soil Biology, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14636-7_9

Download citation

Publish with us

Policies and ethics