Skip to main content

Biofeedback-Based Brain Hemispheric Synchronizing Employing Man-Machine Interface

  • Chapter
Intelligent Interactive Multimedia Systems and Services

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 6))

  • 587 Accesses

Abstract

In this paper an approach to build a brain computer-based hemispheric synchronization system is presented. The concept utilizes the wireless EEG signal registration and acquisition as well as advanced pre-processing methods. The influence of various filtration techniques of EOG artifacts on brain state recognition is examined. The emphasis is put on brain state recognition using band pass filtration for separation of individual brain rhythms. In particular, the recognition of alpha and beta states is examined to assess whether synchronization occurred. Two independent methods of hemispheric synchronization analysis are given, i.e. the first consisted in calculating statistical parameters for the entire signal registered and the second one in using wavelet-based feature statistics for different lengths of time windows, and then discussed. Perspectives of the system development are shown in the conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kemp, B., Varri, A., da Rosa, A., Nielsen, K.D., Gade, J., Penzel, T.: Analysis of brain synchronization based on noise-driven feedback models. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society (1991)

    Google Scholar 

  2. Khemakhem, R., Zouch, W., Hamida, B.A., Taleb-Ahmed, A., Feki, I.: Source Localization Using the Inverse Problem Methods. IJCSNS International Journal of Computer Science and Network Security 0(4) (2009)

    Google Scholar 

  3. Landwehr, N., Hall, M., Frank, E.: Logistic Model Tree, Department of computer Science University of Freiburg, Freiburg, Germany, Department of Computer Science, University of Waikato,Hamilton, New Zeland (2004)

    Google Scholar 

  4. Sanei, S., Chambers, J.A.: EEG Signal Proccesing, Centre of Digital Proccesing. Cardiff University, UK (2008)

    Google Scholar 

  5. Samar, V.J., Bopardikar, A., Rao, R., Schwarz, K.: Wavelet Analysis of Neuroelectric Waveforms: A conceptual tutorial. Brain and Language 66, 7–60 (1999)

    Article  Google Scholar 

  6. Senthil, K.P., Arumuganathan, R., Sivakumar, K., Vimal, C.: An adaptive method to remove ocular artifacts from EEG signals using wavelet transform. Journal of Applied Sciences Research, 741–745 (2009)

    Google Scholar 

  7. Settapat, S., Ohkura, M.: An Alpha-Wave-Based Binaural Beat Sound Control System using Fuzzy Logic and Autoregressive Forecasting Model. In: SICE Annual Conference (2008)

    Google Scholar 

  8. Zunairah, H., Murat, N., Mohd, T., Hanafiah, Z.M., Lias, S., Shilawani, R.S., Kadir, A., Rahman, H.A.: Initial Investigation of Brainwave Synchronization After Five Sessions of Horizontal Rotation Intervention Using EEG. In: 5th International Colloquium on Signal Processing & Its Applications, CSPA (2009)

    Google Scholar 

  9. http://www.eeg-biofeedback.com.pl/index.php?mod=vademecum

  10. http://www.hemi-sync.pl (in Polish)

  11. http://starlab.es/products/enobio

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Katarzyna, K., Krzysztof, K., Piotr, O., Bożena, K. (2010). Biofeedback-Based Brain Hemispheric Synchronizing Employing Man-Machine Interface. In: Tsihrintzis, G.A., Damiani, E., Virvou, M., Howlett, R.J., Jain, L.C. (eds) Intelligent Interactive Multimedia Systems and Services. Smart Innovation, Systems and Technologies, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14619-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14619-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14618-3

  • Online ISBN: 978-3-642-14619-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics