Fire Data Analysis and Feature Reduction Using Computational Intelligence Methods

  • Majid Bahrepour
  • Berend Jan van der Zwaag
  • Nirvana Meratnia
  • Paul Havinga
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 4)


Fire is basically the fast oxidation of a substance that produces gases and chemical productions. These chemical productions can be read by sensors to yield an insight about type and place of the fire. However, as fires may occur in indoor or outdoor areas, the type of gases and therefore sensor readings become different. Recently, wireless sensor networks (WSNs) have been used for environmental monitoring and real-time event detection because of their low implementation costs and their capability of distributed sensing and processing. In this paper, the authors investigate spatial analysis of data for indoor and outdoor fires using data-mining approaches for WSN-based fire detection purposes. This paper also delves into correlated data features in fire data sets and investigates the most contributing features for fire detection applications.


Sensor Node Mean Square Error Wireless Sensor Network Feed Forward Neural Network Input Feature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bahrepour, M., Meratnia, N., Havinga, P.J.M.: Automatic fire detection: a survey from wireless sensor network perspective. Technical Report TR-CTIT-08-73, Centre for Telematics and Information Technology, University of Twente, Enschede (2008) ISSN 1381-3625Google Scholar
  2. 2.
    Bahrepour, M., Meratnia, N., Havinga, P.J.M.: Use of AI techniques for residential fire detection in wireless sensor networks. In: AIAI 2009, Thessaloniki, Greece (2009)Google Scholar
  3. 3.
    Bahrepour, M., Meratnia, N., Havinga, P.J.M.: Sensor fusion-based event detection in wireless sensor networks. In: SensorFusion 2009, Toronto, Canada. IEEE, Los Alamitos (2009)Google Scholar
  4. 4.
    Bahrepour, M., Zhang, Y., Meratnia, N., Havinga, P.J.M.: Use of event detection approaches for outlier detection in wireless sensor networks. In: ISSNIP 2009, Melbourne, Australia (2009)Google Scholar
  5. 5.
    Brain, M.: How smoke detectors work (2000),
  6. 6.
    Jin, G., Nittel, S.: NED: an efficient noise-tolerant event and event boundary detection algorithm in wireless sensor networks. In: 7th International Conference on Mobile Data Management. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  7. 7.
    Kohonen, T.: Self-organized formation of topologically correct feature maps. Biological Cybernetics 43, 59–69 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Lee, B.S., Alexander, M.E., Hawkes, B.C., Lynham, T.J., Stocks, B.J., Englefield, P.: Information systems in support of wildland fire management decision making in Canada. Computers and Electronics in Agriculture 37, 185–198 (2002)CrossRefGoogle Scholar
  9. 9.
    Li, D., Wong, K.D., Hu, Y.H., Sayeed, A.M.: Detection, classification, and tracking of targets. Signal Processing Magazine 19(2), 17–29 (2002)CrossRefGoogle Scholar
  10. 10.
    Liang, Q., Wang, L.: Event detection in sensor networks using fuzzy logic system. In: EEE International Conference on Computational Intelligence for Homeland Security and Personal Safety, Orlando, FL, USA (2005)Google Scholar
  11. 11.
    Lim, Y.-s., Lim, S., Choi, J., Cho, S., Kim, C.-k., Lee, Y.-W.: A fire detection and rescue support framework with wireless sensor networks. In: International Conference on Convergence Information Technology, pp. 135–138. IEEE Computer Society, Los Alamitos (2007)CrossRefGoogle Scholar
  12. 12.
    Marin-Perianu, M., Havinga, P.: D-FLER – a distributed fuzzy logic engine for rule-based wireless sensor networks. In: Ichikawa, H., Cho, W.-D., Satoh, I., Youn, H.Y. (eds.) UCS 2007. LNCS, vol. 4836, pp. 86–101. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Milke, J.A.: Using multiple sensors for discriminating fire detection. In: Fire Suppression and Detection Research Application Symposium, National Fire Protection Research Foundation,, pp. 150–164 (1999)Google Scholar
  14. 14.
    Milke, J.A., McAvoy, T.J.: Analysis of signature patterns for discriminating fire detection with multiple sensors. Fire Technology 31(2), 120–136 (1995)CrossRefGoogle Scholar
  15. 15.
    National Interagency Fire Center: Fire Information – National Fire News, (March 17, 2010)
  16. 16.
    Segal, M.L., Antonio, F.P., Elam, S., Erlenbach, J., de Paolo, K.R.: Method and apparatus for automatic event detection in a wireless communication system, USA Patent (2000)Google Scholar
  17. 17.
    Vu, C.T., Beyah, R.A., Li, Y.: Composite event detection in wireless sensor networks. In: IEEE International, Performance, Computing, and Communications Conference, IPCCC 2007 (2007)Google Scholar
  18. 18.
    Werner-Allen, G., Lorincz, K., Ruiz, M., Marcillo, O., Johnson, J., Lees, J., Welsh, M.: Deploying a wireless sensor network on an active volcano. IEEE Internet Computing 10(2), 18–25 (2006)CrossRefGoogle Scholar
  19. 19.
    Wikipedia: Artificial neural network, (accessed in March 2010)
  20. 20.
    Xue, W., Luo, Q., Chen, L., Liu, Y.: Contour map matching for event detection in sensor networks. In: International Conference on Management of Data. ACM, New York (2006)Google Scholar
  21. 21.
    Zoumboulakis, M., Roussos, G.: Escalation: complex event detection in wireless sensor networks. In: Kortuem, G., Finney, J., Lea, R., Sundramoorthy, V. (eds.) EuroSSC 2007. LNCS, vol. 4793, pp. 270–285. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2010

Authors and Affiliations

  • Majid Bahrepour
    • 1
  • Berend Jan van der Zwaag
    • 1
  • Nirvana Meratnia
    • 1
  • Paul Havinga
    • 1
  1. 1.University of TwenteThe Netherlands

Personalised recommendations