Advertisement

A Parallel Simulated Annealing Solution for VRPTW Based on GPU Acceleration

  • Jian-Ming Li
  • Hong-Song Tan
  • Xu Li
  • Lin-Lin Liu
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 4)

Abstract

In order to improve the performance of simulated annealing (SA) algorithm while solving the large scale vehicle routing problem with time window(VRPTW), we propose a parallel SA(PSA) algorithm based on GPU-acceleration, which maps parallel SA algorithm to thread block executing on consumer-level graphics cards. The analytical results demonstrate that the method we proposed increases the population size, speeds up its execution and provides ordinary users with a feasible PSA solution.

Keywords

VRPTW PSA GPU CUDA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aarts, E.H.L., Korst, et al.: Simulated annealing and Boltzmann machines. Wiley, Chichester (1989)zbMATHGoogle Scholar
  2. 2.
    Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., et al.: Equation of state calculation by fast computing machines. Journ. of Chem. Phys. 21, 1087–1091 (1953)CrossRefGoogle Scholar
  3. 3.
    Krikpatricks, Gelettc, Veechim: Optirnization by simulated annealing. Science 220(8), 671–680 (1983)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Chiang, W.-C., Russell, R.A.: Simulated annealing metaheuristics for the vehicle routing problem with time windows. Annals of Operations Research 63, 3–27 (1996)zbMATHCrossRefGoogle Scholar
  5. 5.
    Chiang, W.-C., Russell, R.A.: A reactive tabu search metaheuristic for the vehiclerouting problem with time windows. INFORMS Journal on Computing 9, 417–430 (1997)zbMATHCrossRefGoogle Scholar
  6. 6.
    Huaqiu, W., Changxiu, C.: Parallel particle swarm optimization based on simulated annealing. Control and Decision 20(5), 500–504 (2005)MathSciNetGoogle Scholar
  7. 7.
    Li, J.-m., Hu, X.-p., Pang, Z.-l., et al.: Parallel genetic algorithm based on fine-grained model with GPU-accelerated. Control and Decision 23(6), 697–704 (2008)Google Scholar
  8. 8.
    Harris, M.J., Coombe, G., Scheuermann, T., et al.: Physically-Based Visual Simulation on Graphics Hardware. In: The Eurographics Association, pp. 109–118 (2002)Google Scholar
  9. 9.
    Li, J.-m., Hu, X.-p., Pang, Z.-l., et al.: A parallel ant colony optimization algorithm based on fine-grained model with GPU-accelerated. Control and Decision 24(8), 1132–1136 (2009)MathSciNetGoogle Scholar
  10. 10.
    Potvin, J.-Y., Bengio, S.: The vehicle routing problem with time windows-part II:genetic search. INFORMS Journal on Computing 8, 165–172 (1996)zbMATHCrossRefGoogle Scholar
  11. 11.
    Hall, J.D., Carr, N.A., Hart, J.C.: Cache and bandwidth aware matrix multiplication on the GPU. UIUC Technical Report UIUCDCS-R-2003-2328 (2003)Google Scholar
  12. 12.
    Kruger, J., Westermann, R.: Linear algebra operators for GPU implementation of numerical algorithms. ACM Trans. Graph. 22(3), 908–916 (2003)CrossRefGoogle Scholar
  13. 13.
    Ragot, P.R., Dreyfus, G.: A problem independent parallel implementation of simulated annealing. IEEE Trans. Compute. Models and experiments 9(8), 827–835 (1990)CrossRefGoogle Scholar
  14. 14.
    Thottethodi, M., Chatterjee, S., Lebeck, A.R.: Tuning strassen’s matrix multiplication for memory efficiency. In: Proceedings of the 1998 ACM/IEEE conference on Supercomputing (CDROM), 14 p. IEEE Computer Society, Los Alamitos (1998)Google Scholar
  15. 15.
    Meer, P.: Simulated Annealing versus Metropolis for a TSP instance. Information Processing Letters 104(6), 216–219 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Russell, R.A.: Hybrid heuristics for the vehicle routing problem with time windows. Transportation Science 29, 156–166 (1995)zbMATHCrossRefGoogle Scholar
  17. 17.
    Wu, T.H., Low, C.Y., Bai, J.W.: Heuristics Solutions to Multi2depot Location2Routing Problems. Computer & Operation Research 29(2), 1393–1415 (2002)zbMATHCrossRefGoogle Scholar
  18. 18.
    Lishan, K., Yun, X.: Non-numerical parallel algorithms. Science Press, Beijing (1994)Google Scholar
  19. 19.
    Potvin, J.Y., Rousseau, J.M.: An Exchange Heu2 ristic for Routing Problems with Time Windows. Journal of the Operational Research Society 46(12), 1433–1446 (1995)zbMATHGoogle Scholar
  20. 20.
    Dorigo, M., Bonabeau, E.: Ant algorithms and stigmergy. Future Generation Computer Systems 16, 851–871 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2010

Authors and Affiliations

  • Jian-Ming Li
    • 1
  • Hong-Song Tan
    • 1
  • Xu Li
    • 2
  • Lin-Lin Liu
    • 1
  1. 1.School of Electronic & Information EngineeringDalian University of TechnologyDalian City, Liaoning ProvinceP.R. China
  2. 2.School of ManagementFudan UniversityShanghai CityP.R. China

Personalised recommendations