Intelligence Analysis as Agent-Assisted Discovery of Evidence, Hypotheses and Arguments

  • Gheorghe Tecuci
  • David Schum
  • Mihai Boicu
  • Dorin Marcu
  • Benjamin Hamilton
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 4)


This paper presents a computational approach to intelligence analysis which is viewed as mixed-initiative discovery of evidence, hypotheses and arguments by an intelligence analyst and a cognitive assistant. The approach is illustrated with the analysis of wide area motion imagery of fixed geographic locations where the goal is to discover threat events such as an ambush or a rocket launch. This example is used to show how the Disciple cognitive assistants developed in the Learning Agents Center can help the analysts in coping with the astonishing complexity of intelligence analysis.


intelligence analysis science of evidence wide-area motion imagery discovery cognitive assistants learning evidence-based reasoning mixed-initiative reasoning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, T., Schum, D.A., Twining, W.: Analysis of evidence. Cambridge U. Press, Cambridge (2005)CrossRefGoogle Scholar
  2. 2.
    Desai, M.: Persistent stare exploitation and analysis system, PerSEAS (2009), (Accessed 18 April 2010)
  3. 3.
    Le, V., Tecuci, G., Boicu, M.: Agent shell for the development of tutoring systems for expert problem solving knowledge. In: Woolf, B.P., Aïmeur, E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS, vol. 5091, pp. 228–238. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Nilsson, N.J.: Problem solving methods in artificial intelligence. McGraw-Hill, New York (1971)Google Scholar
  5. 5.
    Schum, D.A.: Evidence and inference for the intelligence analyst. University Press of America, Lanham (1987)Google Scholar
  6. 6.
    Schum, D.A.: Species of abductive reasoning in fact investigation in law. Cardozo Law Rev. 22(5-6), 1645–1681 (2001)Google Scholar
  7. 7.
    Schum, D.A.: The evidential foundations of probabilistic reasoning. Northwestern University Press (2001)Google Scholar
  8. 8.
    Schum, D.A.: Science of Evidence: Contributions from Law and Probability. Law Probab Risk 8, 197–231 (2009)CrossRefGoogle Scholar
  9. 9.
    Schum, D.A., Tecuci, G., Boicu, M., Marcu, D.: Substance-blind classification of evidence for intelligence analysis. In: Proceedings of the Conference Ontology for the Intelligence Community, George Mason University, Fairfax, Virginia, October 20-22 (2009)Google Scholar
  10. 10.
    Tecuci, G.: Building intelligent agents: An apprenticeship multistrategy learning theory, methodology, tool and case studies. Academic Press, London (1998)Google Scholar
  11. 11.
    Tecuci, G., Boicu, M., Boicu, C., Marcu, D., Stanescu, B., Barbulescu, M.: The Disciple-RKF learning and reasoning agent. Comput. Intell. 21(4), 462–479 (2005)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Tecuci, G., Boicu, M., Cox, M.T.: AI Mag, Special issue on mixed-initiative assistants.  28(2) (2007)Google Scholar
  13. 13.
    Tecuci, G., Boicu, M., Cox, M.T.: Seven aspects of mixed-initiative reasoning: An introduction to the special issue on mixed-initiative assistants. AI Mag. 28(2), 11–18 (2007)Google Scholar
  14. 14.
    Tecuci, G., Boicu, M., Marcu, D., Boicu, C., Barbulescu, M.: Disciple-LTA: Learning, tutoring and analytic assistance. J. Intell. Community Res. Dev. (2008), (Accessed 18 April 2010)
  15. 15.
    Tecuci, G., Schum, D.A., Boicu, M., Marcu, D.: Coping with the complexity of intelligence analysis: cognitive assistants for evidence-based reasoning. Research Report 7 (2010); Learning Agents Center, August 2009, updated April 2010, (Accessed 20 April 2010)
  16. 16.
    Toulmin, S.E.: The uses of argument. Cambridge University Press, Cambridge (1963)Google Scholar
  17. 17.
    Wigmore, J.H.: The science of judicial proof. Little, Brown & Co., Boston (1937)Google Scholar
  18. 18.
    Weiss, C.: Communicating uncertainty in intelligence and other professions. Int. J. Intell. Count. Intell. 21(1), 57–85 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2010

Authors and Affiliations

  • Gheorghe Tecuci
    • 1
  • David Schum
    • 1
  • Mihai Boicu
    • 1
  • Dorin Marcu
    • 1
  • Benjamin Hamilton
    • 2
  1. 1.Learning Agents CenterGeorge Mason UniversityFairfaxUSA
  2. 2.Department of DefenseUSA

Personalised recommendations