Skip to main content

A Novel Approach for Biclustering Gene Expression Data Using Modular Singular Value Decomposition

  • Conference paper
Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2009)

Abstract

Clustering is a method of unsupervised learning, and a common technique for statistical data analysis used in many fields, including machine learning, data mining, pattern recognition, image analysis and bioinformatics. Recently, biclustering (or co-clustering), performing simultaneous clustering on the row and column dimensions of the data matrix, has been shown to be remarkably effective in a variety of applications. In this paper we propose a novel approach to biclustering gene expression data based on Modular Singular Value Decomposition (Mod-SVD). Instead of applying SVD directly on on data matrix, the proposed approach computes SVD on modular fashion. Experiments conducted on synthetic and real dataset demonstrated the effectiveness of the algorithm in gene expression data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. http://www.affymetrix.com/analysis/index.affix

  2. Barkow, S., Bleuler, S., Prelic, A., Zimmermann, P., Zitzler, E.: Bicat: A biclustering analysis toolbox. Bioinformatics 19, 1282–1283 (2006)

    Article  Google Scholar 

  3. Ben-Dor, A., Chor, B., Karp, R., Yakhini, Z.: Discovering local structure in gene expression data: the order-preserving sub-matrix problem. In: Proceedings of the Sixth Annual International Conference on Computational Biology, pp. 49–57. ACM Press, New York (2002)

    Google Scholar 

  4. Blucke, Leemput, Naudts, Remortel, Ma, Verschoren, Moor, Marchal: Syntren: a generator of synthetic gene expression data for design and analysis of structure learning algorithm. BMC Bioinformatics 7, 1–16 (2006)

    Article  Google Scholar 

  5. Cano, C., Adarve, L., López, J., Blanco, A.: Possibilistic approach for biclustering microarray data. Computers in Biology and Medicine 37, 1426–1436 (2007)

    Article  Google Scholar 

  6. Cheng, Y., Church: Biclustering of expression data. In: Proceedings of the Intl Conf. on intelligent Systems and Molecular Biology, pp. 93–103 (2000)

    Google Scholar 

  7. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans. on Evolutionary Computatation 6, 182–197 (2002)

    Article  Google Scholar 

  8. Dhillon, I.S.: Co-clustering documents and words using bipartite spectral graph partitioning. In: Proceedings of the 7th ACM SIGKDD, pp. 269–274 (2001)

    Google Scholar 

  9. Prelic, A., et al.: A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22, 1122–1129 (2006)

    Article  Google Scholar 

  10. Filippone, M., Masulli, F., Rovetta, S., Zini, L.: Comparing fuzzy approaches to biclustering. In: Proceedings of International Meeting on Computational Intelligence for Bioinformatics and Biostatistics, CIBB (2008)

    Google Scholar 

  11. Filippone, M., Masulli, F., Stefano, R.: Possibilistic approach to biclustering: An application to oligonucleotide microarray data analysis. In: Proceedings of the Computational Methods in System Biology, pp. 312–322 (2006)

    Google Scholar 

  12. Gan, X., Alan, Yan, H.: Discovering biclusters in gene expression data based on high dimensional linear geometries. BMC Bioinformatics 9, 209–223 (2008)

    Article  Google Scholar 

  13. Getz, G., Levine, E., Domany, E.: Coupled two-way clustering analysis of gene microarray data. In: Proceedings of National Academy of Science, 12079–12084 (2000)

    Google Scholar 

  14. Hartigan, J.A.: direct clustering of a data matrix. Journal of the American Statistical Association 67, 123–129 (1972)

    Article  Google Scholar 

  15. Hastie, T., Levine, E., Domany, E.: ’Gene shaving’ as a method for identifying distinct set of genes with similar expression patterns. Genome Biology 1, 0003.1–0003.21 (2000)

    Google Scholar 

  16. Mallela, S., Dhillon, I., Modha, D.: Information-theoretic co-clustering. In: In Proceedings of the 9th International Conference on Knowledge Discovery and Data Mining (KDD), pp. 89–98 (2003)

    Google Scholar 

  17. Ihmels, J., Bergmann, S., Barkai, N.: Defining transcription modules using large-scale gene expression data. Bioinformatics 20, 1993–2003 (2004)

    Article  Google Scholar 

  18. Jain, A.K., Murthy, M.N., Flynn, P.J.: Data clustering: A review. ACM Computing Surveys 31, 264–323

    Google Scholar 

  19. Kluger, Y., Basri, Chang, Gerstein: Spectral biclustering of microarray data: Coclustering genes and conditions. Genome Research 13, 703–716 (2003)

    Article  Google Scholar 

  20. Lay, D.C.: Linear Algebra and its Applications. Addison-Wesley, Reading (2002)

    Google Scholar 

  21. Li, Z., Lu, X., Shi, W.: Process variation dimension reduction based on svd. In: Proceedings of the Intl Symposium on Circuits and Systems, pp. 672–675 (2003)

    Google Scholar 

  22. Liu, X., Wang, L.: Computing the maximum similarity bi-clusters of gene expression data. Bioinformatics 23, 50–56 (2007)

    Article  Google Scholar 

  23. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: A survey. IEEE & ACM Trans. on Computational Biology and Bioinformatics 1, 24–45 (2004)

    Article  Google Scholar 

  24. Mitra, S., Banka, H.: Mulit-objective evolutionary biclustering of gene expression data. Pattern Recognition 39, 2464–2477 (2006)

    Article  MATH  Google Scholar 

  25. Mitra, S., Banka, H.: Multi-objective evolutionary biclustering of gene expression data. Pattern Recognition 39, 2464–2477 (2006)

    Article  MATH  Google Scholar 

  26. Orr, S.: Network motifs in the transcriptional regulation network of escherichia coli. Nature Genetics 31, 64–68 (2002)

    Article  Google Scholar 

  27. Rohwer, R., Freitag, D.: Towards full automation of lexicon construction. In: HLT-NAACL 2004: Workshop on Computational Lexical Semantics, pp. 9–16 (2004)

    Google Scholar 

  28. Tanay, A., Sharan, R., Shamir, R.: Discovering statistically significant biclusters in gene expression data. Bioinformatics 18, 136–144 (2002)

    Google Scholar 

  29. Tang, C., Zhang, L., Zhang, A., Ramanathan, M.: Interrelated two-way clustering: an unsupervised approach for gene expression data analysis. In: Proceedings of the Second Annual IEEE International Symposium on Bioinformatics and Bioengineering, BIBE, pp. 41–48 (2001)

    Google Scholar 

  30. Tavazoie, S., Hughes, J.D., Campbell, M.J., Cho, R.J., Church, G.M.: Systematic determination of genetic network architecture. Nature Genetics 22, 281–285 (1999)

    Article  Google Scholar 

  31. Tjhi, W.C., Chen, L.: A partitioning based algorithm to fuzzy co-cluster documents and words. Pattern Recognition Letters 27, 151–159 (2006)

    Article  Google Scholar 

  32. Yang, J., Wang, W., Wang, H., Yu, P.: δ-cluster: capturing subspace correlation in a large data set. In: Proceedings of the 18th IEEE International Conference Data Engineering, pp. 517–528 (2002)

    Google Scholar 

  33. Yang, J., Wang, W., Wang, H., Yu, P.: Enhanced biclustering on expression data. In: Proceedings of the Third IEEE Conference on Bioinformatics and Bioengineering, pp. 321–327 (2003)

    Google Scholar 

  34. Zhang, Z., Teo, A., Ooi, B.: Mining deterministic biclusters in gene expression data. In: Proceedings of the 4th IEEE Symposium on Bioinformatics and Bioengineering, p. 283 (2004)

    Google Scholar 

  35. Zhao, H., Alan, Xie, X., Yan, H.: A new geometric biclustering algorithm based on the Hough transform for analysis of large scale microarray data. Journal of Theoretical Biology 251, 264–274 (2008)

    Article  Google Scholar 

  36. Zhao, H., Yan, H.: Hough feature, a novel method for assessing drug effects in three-color cdna microarray experiments. BMC Bioinformatics 8, 256 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aradhya, V.N.M., Masulli, F., Rovetta, S. (2010). A Novel Approach for Biclustering Gene Expression Data Using Modular Singular Value Decomposition. In: Masulli, F., Peterson, L.E., Tagliaferri, R. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2009. Lecture Notes in Computer Science(), vol 6160. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14571-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14571-1_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14570-4

  • Online ISBN: 978-3-642-14571-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics