Skip to main content

Abstract

In this paper we present the ImmunoGrid project, whose goal is to develop an immune system simulator which integrates molecular and system level models with Grid computing resources for large-scale tasks and databases. We introduce the models and the technologies used in the ImmunoGrid Simulator, showing how to use them through the ImmunoGrid web interface. The ImmunoGrid project has proved that simulators can be used in conjunction with grid technologies for drug and vaccine discovery, demonstrating that it is possible to drastically reduce the developing time of such products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Castiglione, F., Bernaschi, M., Succi, S.: Simulating the immune response on a distributed parallel computer. Int. J. Mod. Phys. C 8, 527–545 (1997)

    Article  Google Scholar 

  2. Motta, S., Castiglione, F., Lollini, P., Pappalardo, F.: Modelling vaccination schedules for a cancer immunoprevention vaccine. Immunome Res. 1, 5 (2005)

    Article  Google Scholar 

  3. Lin, H.H., Ray, S., Tongchusak, S., et al.: Evaluation of MHC class I peptide binding prediction servers: applications for vaccine research. BMC Immunol. 9, 8 (2008)

    Article  Google Scholar 

  4. Lin, H.H., Zhang, G.L., Tongchusak, S., et al.: Evaluation of MHC-II peptide binding prediction servers: applications for vaccine research. BMC Bioinformatics 9(Suppl. 12), S22 (2008)

    Article  Google Scholar 

  5. Lefranc, M.P.: IMGT, the international ImMunoGeneTics information system ®: a standardized approach for immunogenetics and immunoinformatics. Immunome Res. 1, 3 (2005) [ imgt.cines.fr ]

    Article  Google Scholar 

  6. Lefranc, M.P., Giudicelli, V., Duroux, P.: IMGT ®, a system and an ontology that bridge biological and computational spheres in bioinformatics. Brief Bioinform. 9, 263–275 (2008)

    Article  Google Scholar 

  7. Motta, S., Brusic, V.: Mathematical modeling of the immune system. In: Ciobanu, G., Rozenberg, G. (eds.) Modelling in Molecular Biology. Natural Computing Series, pp. 193–218. Springer, Berlin (2004)

    Google Scholar 

  8. Louzoun, Y.: The evolution of mathematical immunology. Immunol. Rev. 216, 9–20 (2007)

    Google Scholar 

  9. Castiglione, F., Liso, A.: The role of computational models of the immune system in designing vaccination strategies. Immunopharmacol. Immunotoxicol. 27, 417–432 (2005)

    Article  Google Scholar 

  10. Falus, A. (ed.): Immunogenomics and HumanDisease. Wiley, Hoboken (2006)

    Google Scholar 

  11. Purcell, A.W., Gorman, J.J.: Immunoproteomics: Massspectrometry-based methods to study the targets of the immune response. Mol. Cell Proteomics 3, 193–208 (2004)

    Article  Google Scholar 

  12. Brusic, V., Marina, O., Wu, C.J., Reinherz, E.L.: Proteome informatics for cancer research: from molecules to clinic. Proteomics 7, 976–991 (2007)

    Article  Google Scholar 

  13. Schönbach, C., Ranganathan, S., Brusic, V. (eds.): Immunoinformatics. Springer, Heidelberg (2007)

    Google Scholar 

  14. Tegnér, J., Nilsson, R., Bajic, V.B., et al.: Systems biology of innate immunity. Cell Immunol. 244, 105–109 (2006)

    Article  Google Scholar 

  15. Sachdeva, N., Asthana, D.: Cytokine quantitation: technologies and applications. Front Biosci. 12, 4682–4695 (2007)

    Article  Google Scholar 

  16. Harnett, M.M.: Laser scanning cytometry: understanding the immune system in situ. Nat. Rev. Immunol. 7, 897–904 (2007)

    Article  Google Scholar 

  17. Brusic, V., Bucci, K., Schon̈bach, C., et al.: Efficient discovery of immune response targets by cyclical refinement of QSAR models of peptide binding. J. Mol. Graph Model 19, 405–411 (2001)

    Article  Google Scholar 

  18. Pappalardo, F., Motta, S., Lollini, P.L., Mastriani, E.: Analysis of vaccines schedules using models. Cell Immunol. 244, 137–140 (2006)

    Article  Google Scholar 

  19. Yates, A., Chan, C.C., Callard, R.E., et al.: An approach to modelling in immunology. Brief Bioinform. 2, 245–257 (2001)

    Article  Google Scholar 

  20. Celada, F., Seiden, P.E.: A computer model of cellular inter- action in the immune system. Immunol. Today 13, 56–62 (1992)

    Article  Google Scholar 

  21. Castiglione, F., Poccia, F., D’Offizi, G., Bernaschi, M.: Mutation, fitness, viral diversity and predictive markers of disease progression in a computational model of HIV-1 infection. AIDS Res. Hum. Retroviruses 20, 1316–1325 (2004)

    Article  Google Scholar 

  22. Baldazzi, V., Castiglione, F., Bernaschi, M.: An enhanced agent based model of the immune system response. Cell Immunol. 244, 77–79 (2006)

    Article  Google Scholar 

  23. Castiglione, F., Duca, K., Jarrah, A., et al.: Simulating Epstein- Barr virus infection with C-ImmSim. Bioinformatics 23, 1371–1377 (2007)

    Article  Google Scholar 

  24. Castiglione, F., Toschi, F., Bernaschi, M., et al.: Computational modeling of the immune response to tumor antigens: implications for vaccination. J. Theo. Biol. 237/4, 390–400 (2005)

    Article  Google Scholar 

  25. Lollini, P.L., Motta, S., Pappalardo, F.: Discovery of cancer vaccination protocols with a genetic algorithm driving an agent based simulator. BMC Bioinformatics 7, 352 (2006)

    Article  Google Scholar 

  26. Pappalardo, F., Lollini, P.L., Castiglione, F., Motta, S.: Modeling and simulation of cancer immunoprevention vaccine. Bioinformatics 21, 2891–2897 (2005)

    Article  Google Scholar 

  27. Pappalardo, F., Musumeci, S., Motta, S.: Modeling immune system control of atherogenesis. Bioinformatics 24, 1715–1721 (2008)

    Article  Google Scholar 

  28. He, X., Luo, L.: Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 56, 6811–6817 (1997)

    Article  Google Scholar 

  29. Ferreira Jr., S.C., Martins, M.L., Vilela, M.J.: Morphology transitions induced by chemotherapy in carcinomas in situ. Phys. Rev. E 67, 051914 (2003)

    Article  Google Scholar 

  30. Catron, D.M., Itano, A.A., Pape, K.A., et al.: Visualizing the first 50hr of the primary immune response to a soluble antigen. Immunity 21, 341–347 (2004)

    Article  Google Scholar 

  31. Garside, P., Ingulli, E., Merica, R.R., et al.: Visualization of specific B and T lymphocyte interactions in the lymph node. Science 281, 96–99 (1998)

    Article  Google Scholar 

  32. Mempel, T.R., Henrickson, S.E., Von Andrian, U.H.: T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427, 154–159 (2004)

    Article  Google Scholar 

  33. Brusic, V., Rudy, G., Harrison, L.C.: MHCPEP, a database of MHC-binding peptides: update 1997. Nucleic Acids Res 26, 368–371 (1998)

    Article  Google Scholar 

  34. Rammensee, H., Bachmann, J., Emmerich, N.P., et al.: SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50, 213–219 (1999)

    Article  Google Scholar 

  35. Toseland, C.P., Clayton, D.J., McSparron, H., et al.: AntiJen: a quantitative immunology database integrating functional, thermodynamic, kinetic, biophysical, and cellular data. Immunome Res. 1, 4 (2005)

    Article  Google Scholar 

  36. Sette, A., Bui, H., Sidney, J., et al.: The immune epitope database and analysis resource. In: Rajapakse, J.C., Wong, L., Acharya, R. (eds.) PRIB 2006. LNCS (LNBI), vol. 4146, pp. 126–132. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  37. Nielsen, M., Lundegaard, C., Lund, O., Kesmir, C.: The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage. Immunogenetics 57, 33–41 (2005)

    Article  Google Scholar 

  38. Larsen, M.V., Lundegaard, C., Lamberth, K., et al.: An integrative approach to CTL epitope prediction: a combined algorithm integrating MHC class I binding, TAP transport efficiency, and proteasomal cleavage predictions. Eur. J. Immunol. 35, 2295–2303 (2005)

    Article  Google Scholar 

  39. Nielsen, M., Lundegaard, C., Lund, O.: Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC Bioinformatics 8, 238 (2007)

    Article  Google Scholar 

  40. Nielsen, M., Lundegaard, C., Blicher, T., et al.: NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence. PLoS ONE 2, e796 (2007)

    Article  Google Scholar 

  41. Larsen, J.E., Lund, O., Nielsen, M.: Improved method for predicting linear B-cell epitopes. Immunome Res. 2, 2 (2006)

    Article  Google Scholar 

  42. Andersen, P.H., Nielsen, M., Lund, O.: Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein Sci. 15, 2558–2567 (2006)

    Article  Google Scholar 

  43. Brusic, V., Bajic, V.B., Petrovsky, N.: Computational methods for prediction of T-cell epitopes a framework for modelling, testing, and applications. Methods 34, 436–443 (2004)

    Article  Google Scholar 

  44. Tong, J.C., Tan, T.W., Ranganathan, S.: Methods and protocols for prediction of immunogenic epitopes. Brief Bioinform. 8, 96–108 (2007)

    Article  Google Scholar 

  45. Reche, P.A., Glutting, J.P., Zhang, H., Reinherz, E.L.: Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics 56, 405–419 (2004)

    Article  Google Scholar 

  46. Zhang, G.L., Khan, A.M., Srinivasan, K.N., et al.: MULTIPRED: a computational system for prediction of promiscuous HLA binding peptides. Nucleic Acids Res. 33, 17–29 (2005)

    Article  Google Scholar 

  47. Zhang, G.L., Bozic, I., Kwoh, C.K., et al.: Prediction of supertype-specific HLA class I binding peptides using support vector machines. J. Immunol. Meth. 320, 143–154 (2007)

    Article  Google Scholar 

  48. Peters, B., Bui, H.H., Frankild, S.: A community resource benchmarking predictions of peptide binding to MHC-I molecules. PLoS Comput. Biol. 2, e65 (2006)

    Article  Google Scholar 

  49. Larsen, M.V., Lundegaard, C., Lamberth, K., et al.: Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics 8, 424 (2007)

    Article  Google Scholar 

  50. Lin, H.H., Ray, S., Tongchusak, S., et al.: Evaluation of MHC class I peptide binding prediction servers: applications for vaccine research. BMC Immunol. 9, 8 (2008)

    Article  Google Scholar 

  51. You, L., Zhang, P., Bodén, M., Brusic, V.: Understanding prediction systems for HLA-binding peptides and T-cell epitope identification. In: Rajapakse, J.C., Schmidt, B., Volkert, L.G. (eds.) PRIB 2007. LNCS (LNBI), vol. 4774, pp. 337–348. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  52. Lin, H.H., Zhang, G.L., Tongchusak, S., et al.: Evaluation of MHC-II peptide binding prediction servers: applications for vaccine research. BMC Bioinformatics 9(Suppl. 12), S22 (2008)

    Article  Google Scholar 

  53. Gowthaman, U., Agrewala, J.N.: In silico tools for predicting peptides binding to HLA-class II molecules: more confusion than conclusion. J. Proteome Res. 7, 154–163 (2008)

    Article  Google Scholar 

  54. Rajapakse, M., Schmidt, B., Feng, L., Brusic, V.: Predicting peptides binding to MHC class II molecules using multi- objective evolutionary algorithms. BMC Bioinformatics 8, 459 (2007)

    Article  Google Scholar 

  55. Nielsen, M., Lundegaard, C., Worning, P., et al.: Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach. Bioinformatics 20, 1388–1397 (2004)

    Article  Google Scholar 

  56. Karpenko, O., Huang, L., Dai, Y.: A probabilistic meta- predictor for the MHC class II binding peptides. Immunogenetics 60, 25–36 (2008)

    Article  Google Scholar 

  57. Zhang, C., Crasta, O., Cammer, S., et al.: An emerging cyberinfrastructure for biodefense pathogen and pathogen-host data. Nucleic Acids Res. 36, 884–891 (2008)

    Article  Google Scholar 

  58. Laghaee, A., Malcolm, C., Hallam, J., Ghazal, P.: Artificial intelligence and robotics in high throughput post-genomics. Drug Discov. Today 10, 12539 (2005)

    Article  Google Scholar 

  59. Fogel, G.: Computational Intelligence approaches for pattern discovery in biological systems. Brief Bioinform. 9, 307–316 (2008)

    Article  Google Scholar 

  60. Rauwerda, H., Roos, M., Hertzberger, B.O., Breit, T.M.: The promise of a virtual lab in drug discovery. Drug Discov. Today 11, 228–236 (2006)

    Article  Google Scholar 

  61. Becciani, U.: The Cometa Consortium and the PI2S2 project. Mem. S.A.It 13(Suppl.) (2009)

    Google Scholar 

  62. Romberg, M.: The UNICORE Architecture: Seamless Access to Distributed Resources, High Performance Distributed Computing. In: Proceedings of the 8th IEEE International Symposium on High Performance Distributed Computing, August 03-06 (1999)

    Google Scholar 

  63. Coveney, P.V., Saksena, R.S., Zasada, S.J., McKeown, M., Pickles, S.: The Application Hosting Environment: Lightweight Middleware for Grid-Based Computational Science. Computer Physics Communications 176(6), 406–418

    Google Scholar 

  64. Sloan, T.M., Menday, R., Seed, T.P., Illingworth, M., Trew, A.S.: DESHL–Standards Based Access to a Heterogeneous European Supercomputing Infrastructure. In: Proceedings of the Second IEEE International Conference on e-Science and Grid Computing, p. 91 (2006)

    Google Scholar 

  65. McGougha, A.S., Leeb, W., Dasc, S.: A standards based approach to enabling legacy applications on the Grid. Future Generation Computer Systems 24(7), 731–743 (2008)

    Article  Google Scholar 

  66. Foster, I., Kesselman, C.: Globus: a Metacomputing Infrastructure Toolkit. International Journal of High Performance Computing Applications 11(2), 115–128 (1997), doi:10.1177/109434209701100205

    Article  Google Scholar 

  67. Niederberger, R.: DEISA: Motivations, strategies, technologies. In: Proc. of the Int. Supercomputer Conference, ISC 2004 (2004)

    Google Scholar 

  68. Mastriani, E., Halling-Brown, M., Giorgio, E., Pappalardo, F., Motta, S.: P2SI2-ImmunoGrid services integration: a working example of web based approach. In: Proceedings of the Final Workshop of Grid Projects, PON Ricerca 2000-2006, vol. 1575, pp. 438–445 (2009); ISBN: 978-88-95892-02-3

    Google Scholar 

  69. Halling-Brown, M.D., Moss, D.S., Sansom, C.J., Shepherd, A.J.: Computational Grid Framework for Immunological Applications. Philosophical Transactions of the Royal Society A (2009)

    Google Scholar 

  70. Halling-Brown, M.D., Moss, D.S., Shepherd, A.J.: Towards a lightweight generic computational grid framework for biological research. BMC Bioinformatics 9, 407 (2008)

    Article  Google Scholar 

  71. Halling-Brown, M.D., Moss, D.S., Sansom, C.S., Sheperd, A.J.: Web Services, Workflow & Grid Technologies for Immunoinformatics. In: Proceedings of Intern. Congress of Immunogenomics and Immunomics, vol. 268 (2006)

    Google Scholar 

  72. Kumar, N., Hendriks, B.S., Janes, K.A., De Graaf, D., Lauffenburger, D.A.: Applying computational modeling to drug discovery and development. Drug discovery today 11(17-18), 806–811 (2006)

    Article  Google Scholar 

  73. Davies, M.N., Flower, D.R.: Harnessing bioinformatics to discover new vaccines. Drug Discovery Today 12(9-10), 389–395 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pappalardo, F. et al. (2010). The ImmunoGrid Simulator: How to Use It. In: Masulli, F., Peterson, L.E., Tagliaferri, R. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2009. Lecture Notes in Computer Science(), vol 6160. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14571-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14571-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14570-4

  • Online ISBN: 978-3-642-14571-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics