Adaptive Algorithms for Planar Convex Hull Problems

  • Hee-Kap Ahn
  • Yoshio Okamoto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6213)


We study problems in computational geometry from the viewpoint of adaptive algorithms. Adaptive algorithms have been extensively studied for the sorting problem, and in this paper we generalize the framework to geometric problems. To this end, we think of geometric problems as permutation (or rearrangement) problems of arrays, and define the “presortedness” as a distance from the input array to the desired output array. We call an algorithm adaptive if it runs faster when a given input array is closer to the desired output, and furthermore it does not make use of any information of the presortedness. As a case study, we look into the planar convex hull problem for which we discover two natural formulations as permutation problems. An interesting phenomenon that we prove is that for one formulation the problem can be solved adaptively, but for the other formulation no adaptive algorithm can be better than an optimal output-sensitive algorithm for the planar convex hull problem.


Convex Hull Adaptive Algorithm Input Point Weak Order Geometric Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baran, I., Demaine, E.D.: Optimal adaptive algorithms for finding the nearest and farthest point on a parametric black-box curve. Internat. J. Comput. Geom. Appl. 15, 327–350 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Barbay, J., Chen, E.Y.: Convex hull of the union of convex objects in the plane: an adaptive analysis. In: Proc. 20th CCCG, pp. 47–51 (2008)Google Scholar
  3. 3.
    Barbay, J., Golynski, A., Munro, J.I., Rao, S.S.: Adaptive searching in succinctly encoded binary relations and tree-structured documents. Theor. Comput. Sci. 387, 284–297 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Barbay, J., Kenyon: Adaptive intersection and t-threshold problems. In: Proc. 13th SODA, pp. 390–399 (2002)Google Scholar
  5. 5.
    Bentley, J.L.: Multidimensional binary search trees used for associative searching. Comm. ACM 18, 509–517 (1975)CrossRefzbMATHGoogle Scholar
  6. 6.
    Blum, M., Floyd, R.W., Pratt, V.R., Rivest, R.L., Tarjan, R.E.: Time bounds for selection. J. Comput. Syst. Sci. 7, 448–461 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bose, P., Maheshwari, A., Morin, P., Morrison, J., Smid, M., Vahrenhold, J.: Space-efficient geometric divide-and-conquer algorithms. Comput. Geom. 37, 209–227 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Brodal, G.S., Fagerberg, R., Moruz, G.: Cache-aware and cache-oblivious adaptive sorting. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 576–588. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Brönnimann, H., Chan, T.M., Chen, E.Y.: Towards in-place geometric algorithms and data structures. In: Proc. 20th SCG, pp. 239–246 (2004)Google Scholar
  10. 10.
    Brönnimann, H., Iacono, J., Katajainen, J., Morin, P., Morrison, J., Toussaint, G.T.: Space-efficient planar convex hull algorithms. Theor. Comput. Sci. 321, 25–40 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Demaine, E.D., López-Ortiz, A., Munro, J.I.: Adaptive set intersections, unions, and differences. In: Proc. 11th SODA, pp. 743–752 (2000)Google Scholar
  12. 12.
    Elmasry, A.: Priority queues, pairing, and adaptive sorting. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 183–194. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Elmasry, A., Fredman, M.L.: Adaptive sorting: an information theoretic perspective. Acta Inform. 45, 33–42 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Estivill-Castro, V., Wood, D.: Practical adaptive sorting. In: Dehne, F., Fiala, F., Koczkodaj, W.W. (eds.) ICCI 1991. LNCS, vol. 497, pp. 47–54. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  15. 15.
    Estivill-Castro, V., Wood, D.: A survey of adaptive sorting algorithms. ACM Comput. Surveys 24, 441–476 (1992)CrossRefGoogle Scholar
  16. 16.
    Guibas, L.J., McCreight, E.M., Plass, M.F., Roberts, J.R.: A new representation of linear lists. In: Proc. 9th STOC, pp. 49–60 (1977)Google Scholar
  17. 17.
    Kapoor, S., Ramanan, P.: Lower bounds for maximal and convex layers problems. Algorithmica 4, 447–459 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kirkpatrick, D.G., Seidel, R.: The ultimate planar convex hull algorithm? SIAM J. Comput. 15, 287–299 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Levcopoulos, C., Lingas, A., Mitchell, J.S.B.: Adaptive algorithms for constructing convex hulls and triangulations of polygonal chains. In: Penttonen, M., Schmidt, E.M. (eds.) SWAT 2002. LNCS, vol. 2368, pp. 80–89. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Levcopoulos, C., Petersson, O.: Splitsort—An adaptive sorting algorithm. Infor. Proc. Lett. 39, 205–211 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Levcopoulos, C., Petersson, O.: Adaptive Heapsort. J. Algor. 14, 395–413 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Mannila, H.: Measures of presortedness and optimal sorting algorithms. IEEE Trans. Comput. 34, 318–325 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Mehlhorn, K.: Data Structures and Algorithms. Sorting and Searching, vol. 1. Springer, Heidelberg (1984)zbMATHGoogle Scholar
  24. 24.
    Megiddo, N.: Linear programming in linear time when the dimension is fixed. J. ACM 31, 114–127 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Pagh, A., Pagh, R., Thorup, M.: On adaptive integer sorting. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 556–567. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Hee-Kap Ahn
    • 1
  • Yoshio Okamoto
    • 2
  1. 1.Department of Computer Science and EngineeringPohang University of Science and TechnologyKorea
  2. 2.Graduate School of Infomation Science and EngineeringTokyo Institute of TechnologyJapan

Personalised recommendations