Advertisement

Computing Minimum Diameter Color-Spanning Sets

  • Rudolf Fleischer
  • Xiaoming Xu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6213)

Abstract

We study the minimum diameter color-spanning set problem which has recently drawn some attention in the database community. We show that the problem can be solved in polynomial time for L 1 and L  ∞  metrics, while it is NP-hard for all other L p metrics even in two dimensions. However, we can efficiently compute a constant factor approximation.

Keywords

Approximation Algorithm Spatial Database Minimum Diameter Conjunctive Normal Form Constant Factor Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L., Palop, B., Sacristan, V.: The farthest color Voronoi diagram and related problems. In: Proceedings of the 17th European Workshop on Computational Geometry (EWCG 2001), pp. 113–116 (2001)Google Scholar
  2. 2.
    Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L., Palop, B., Sacristan, V.: Smallest color-spanning objects. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 278–289. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Chen, Y., Chen, S., Gu, Y., Hui, M., Li, F., Liu, C., Liu, L., Ooi, B.C., Yang, X., Zhang, D., Zhou, Y.: MarcoPolo: A community system for sharing and integrating travel information on maps. In: Proceedings of the 12th International Conference on Extending Database Technology (EDBT 2009), pp. 1148–1151 (2009)Google Scholar
  4. 4.
    El-Gebeily, M.A., Fiagbedzi, Y.A.: On certain properties of the regular n-simplex. International Journal of Mathematical Education in Science and Technology 35(4), 617–629 (2004)CrossRefGoogle Scholar
  5. 5.
    Huttenlocher, D.P., Kedem, K., Sharir, M.: The upper envelope of voronoi surfaces and its applications. Discrete & Computational Geometry, 267–291 (1993)Google Scholar
  6. 6.
    Jung, H.: Über die kleinste Kugel, die eine räumliche Figur einschließt. Journal für die reine und angewandte Mathematik 123, 232–257 (1901)zbMATHGoogle Scholar
  7. 7.
    Zhang, D., Chee, Y.M., Mondal, A., Tung, A.K.H., Kitsuregawa, M.: Keyword search in spatial databases: Towards searching by document. In: Proceedings of the 25th IEEE International Conference on Data Engineering (ICDE 2009), pp. 688–699 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Rudolf Fleischer
    • 1
  • Xiaoming Xu
    • 1
  1. 1.School of Computer Science and IIPLFudan UniversityShanghaiChina

Personalised recommendations