Path Separability of Graphs

  • Emilie Diot
  • Cyril Gavoille
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6213)


In this paper we investigate the structural properties of k-path separable graphs, that are the graphs that can be separated by a set of k shortest paths. We identify several graph families having such path separability, and we show that this property is closed under minor taking. In particular we establish a list of forbidden minors for 1-path separable graphs.


Short Path Planar Graph Weighted Graph Outerplanar Graph Separable Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham, I., Gavoille, C.: Object location using path separators. In: 25th Annual ACM Symp. on Principles of Distributed Comp. (PODC), pp. 188–197 (2006)Google Scholar
  2. 2.
    Abu-Khzam, F.N., Collins, R.L., Fellows, M.R., Langston, M.A., Suters, W.H., Symons, C.T.: Kernelization algorithms for the vertex cover problem: Theory and experiments. In: 6th Workshop ALENEX, pp. 62–69 (2004)Google Scholar
  3. 3.
    Chepoi, V.D., Dragan, F.F., Estellon, B., Habib, M., Vaxès, Y.: Diameters, centers, and approximating trees of delta-hyperbolic geodesic spaces and graphs. In: 24st Annual ACM Symposium on Computational Geometry (SoCG), pp. 59–68 (2008)Google Scholar
  4. 4.
    Dourisboure, Y., Gavoille, C.: Tree-decompositions with bags of small diameter. Discrete Mathematics 307(16), 2008–2029 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Flum, J., Grohe, M.: Parametrized Complexity Theory. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  6. 6.
    Koster, A.M.C.A., Bodlaender, H.L., van Hoesel, S.P.M.: Treewidth: Computational experiments. In: Elsevier (ed.) 1st Cologne-Twente Workshop on Graphs and Combinatorial Optimization, vol. 8, pp. 54–57. ENDM, Amsterdam (2001)Google Scholar
  7. 7.
    Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM Journal on Applied Mathematics 36(2), 177–189 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. Journal of Combinatorial Theory, Series B 63(1), 65–110 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Robertson, N., Seymour, P.D.: Graph minors. XVI. Excluding a non-planar graph. Journal of Combinatorial Theory, Series B 89(1), 43–76 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Robertson, N., Seymour, P.D.: Graph minors. XX. Wagner’s conjecture. Journal of Combinatorial Theory, Series B 92(2), 325–357 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Thorup, M.: Compact oracles for reachability and approximate distances in planar digraphs. Journal of the ACM 51(6), 993–1024 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Umezawa, K., Yamazaki, K.: Tree-length equals branch-length. Discrete Mathematics 309(13), 4656–4660 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Emilie Diot
    • 1
  • Cyril Gavoille
    • 1
  1. 1.LaBRIUniversité de BordeauxFrance

Personalised recommendations