Advertisement

A Hybrid Graph Representation for Recursive Backtracking Algorithms

  • Faisal N. Abu-Khzam
  • Michael A. Langston
  • Amer E. Mouawad
  • Clinton P. Nolan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6213)

Abstract

Many exact algorithms for \(\mathcal{NP}\)-hard graph problems adopt the old Davis-Putman branch-and-reduce paradigm. The performance of these algorithms often suffers from the increasing number of graph modifications, such as deletions, that reduce the problem instance and have to be “taken back” frequently during the search process. The use of efficient data structures is necessary for fast graph modification modules as well as fast take-back procedures. In this paper, we investigate practical implementation-based aspects of exact algorithms by providing a hybrid graph representation that addresses the take-back challenge and combines the advantage of \({\mathcal{O}}(1)\) adjacency-queries in adjacency-matrices with the advantage of efficient neighborhood traversal in adjacency-lists.

Keywords

data structures exact algorithms recursive backtracking vertex cover dominating set 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, J., Kanj, I.A., Jia, W.: Vertex cover: Further observations and further improvements. Journal of Algorithms 41, 313–324 (2001)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Chen, J., Liu, L., Jia, W.: Improvement on vertex cover for low-degree graphs. Networks 35(4), 253–259 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Engebretsen, L., Holmerin, J.: Clique is hard to approximate within n 1 − o(1). In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 2–12. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: domination - a case study. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 191–203. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Fomin, F.V., Grandoni, F., Kratsch, D.: Solving connected dominating set faster than 2n. Algorithmica 52(2), 153–166 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: a simple O(20.288n) independent set algorithm. In: Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm (SODA), New York, USA, pp. 18–25 (2006)Google Scholar
  7. 7.
    Fomin, F.V., Kratsch, D., Woeginger, L., Woeginger, G.J.: Exact (exponential) algorithms for the dominating set problem. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 245–256. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Grandoni, F.: A note on the complexity of minimum dominating set. J. Discrete Algorithms 4(2), 209–214 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hastad, J.: Clique is hard to approximate within n (1 − ε). Acta Mathematica, 627–636 (1996)Google Scholar
  10. 10.
    Randerath, B., Schiermeyer, I.: Exact algorithms for minimum dominating set. Technical report, Zentrum für Angewandte Informatik Köln, Lehrstuhl Speckenmeyer (2004)Google Scholar
  11. 11.
    van Rooij, J.M., Bodlaender, H.L.: Exact algorithms for edge domination. Technical Report UU-CS-2007-051, Department of Information and Computing Sciences, Utrecht University (2007)Google Scholar
  12. 12.
    van Rooij, J.M., Nederlof, J., van Dijk, T.C.: Inclusion/exclusion meets measure and conquer: Exact algorithms for counting dominating sets. Technical Report UU-CS-2008-043, Department of Information and Computing Sciences, Utrecht University (2008)Google Scholar
  13. 13.
    van Rooij, J.M., Bodlaender, H.L.: Design by measure and conquer, a faster exact algorithm for dominating set. In: Albers, S., Weil, P. (eds.) STACS. LIPIcs, vol. 1, pp. 657–668. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Faisal N. Abu-Khzam
    • 1
  • Michael A. Langston
    • 2
  • Amer E. Mouawad
    • 1
  • Clinton P. Nolan
    • 2
  1. 1.Department of Computer Science and MathematicsLebanese American UniversityBeirut
  2. 2.Department of Electrical Engineering and Computer ScienceUniversity of TennesseeKnoxvilleUSA

Personalised recommendations