Skip to main content

An Immunological Algorithm for Doping Profile Optimization in Semiconductors Design

  • Conference paper
Artificial Immune Systems (ICARIS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6209))

Included in the following conference series:

Abstract

The doping profile optimization in semiconductor has been tackled as a constrained optimization problem coupled with a drift-diffusion model to simulate the physical phenomenon. In order to design high performance semiconductor devices, a new immunological algorithm, the Constrained Immunological Algorithm (cIA), has been introduced. The experimental results confirm that cIA clearly outperforms previous state-of-the-art algorithms in doping profile optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anile, A.M., Cutello, V., Nicosia, G., Rascuna, R., Spinella, S.: Comparison among evolutionary algorithms and classical optimization methods for circuit design problems. In: IEEE Congress on Evolutionary Computation, Edinburgh, vol. 1, pp. 765–772. IEEE Press, Los Alamitos (2005)

    Chapter  Google Scholar 

  2. Jüngel, A.: Quasi-hydrodynamic semiconductor equations. Birkhäuser, Basel (2001)

    MATH  Google Scholar 

  3. Degond, P., Gallego, S., Méhats, F.: An entropic quantum drift-diffusion model for electron transport in resonant tunneling diodes. J. of Computational Physics 221(1), 226–249 (2007)

    Article  MATH  Google Scholar 

  4. El Ayyadi, A., Jungel, A.: Semiconductor simulations using a coupled quantum drift-diffusion Schrodinger-Poisson model. SIAM J. on Applied Mathematics 66(2), 554–572 (2006)

    Article  Google Scholar 

  5. Burger, M., Pinnau, R.: Fast optimal design of semiconductor devices. SIAM J. on Applied Mathematics, 108–126 (2003)

    Google Scholar 

  6. Biondi, T., Ciccazzo, C., Cutello, V., D’Antona, S., Nicosia, G., Spinella, S.: Multi-objective evolutionary algorithms and pattern search methods for circuit design problems. J. of Universal Computer Science 12(4), 432–449 (2006)

    Google Scholar 

  7. Price, W.: A controlled random search procedure for global optimisation. The Computer J. 20(4), 367–370 (1977)

    Article  MATH  Google Scholar 

  8. Jones, D., Perttunen, C., Stuckman, B.: Lipschitzian optimization without the Lipschitz constant. J. of Optimization Theory and Applications 79(1), 157–181 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Sinha, A., Tiwari, S., Deb, K.: A population-based, steady-state procedure for real-parameter optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 1, pp. 514–521 (2005)

    Google Scholar 

  10. Markowich, P.: The stationary semiconductor device equations. Springer, Heidelberg (1986)

    Google Scholar 

  11. Scharfetter, D., Gummel, H.: Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Electron Devices 16(1), 64–77 (1969)

    Article  Google Scholar 

  12. Abdallah, N., Degond, P.: On a hierarchy of macroscopic models for semiconductors. J. of Mathematical Physics 37, 3306–3333 (1996)

    Article  MATH  Google Scholar 

  13. Chen, X., Chen, L., Jian, H.: The Dirichlet problem of the quantum drift-diffusion model. Nonlinear Analysis 69(9), 3084–3092 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Nicosia, G., Rinaudo, S., Sciacca, E.: An evolutionary algorithm-based approach to robust analog circuit design using constrained multi-objective optimization. In: AI 2007, pp. 175–183. Springer, Heidelberg (2007)

    Google Scholar 

  15. Di Stefano, V., Drago, C.R., Milazzo, C.: Evolutionary Algorithm for Doping Profile Optimization in Semiconductor Design. In: SIMAI, vol. 2, pp. 367–370 (2006)

    Google Scholar 

  16. Rinaudo, S., Moschella, F., Muscato, O., Ahile, A.M.: Controlled random search parallel algorithm for global optimization with distributed processes on multivendor cpus. In: Arkeryd, L., et al. (eds.) Progress in Industrial Mathematics - ECMI (1998)

    Google Scholar 

  17. Romano, V.: 2D numerical simulation of the MEP energy-transport model with a finite dierence scheme. J. of Computational Physics 221(2), 439–468 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Martin, J., Simpson, T.: Use of Kriging models to approximate deterministic computer models. AIAA J. 43(4), 853–863 (2005)

    Article  Google Scholar 

  19. Wan, Z., Igusa, T.: Statistics of Nadaraya-Watson estimator errors in surrogate-based optimization. Optimization and Engineering 7(3), 385–397 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. McDonald, D., Grantham, W., Tabor, W., Murphy, M.: Global and local optimization using radial basis function response surface models. Applied Mathematical Modelling 31(10), 2095–2110 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stracquadanio, G., Drago, C., Romano, V., Nicosia, G. (2010). An Immunological Algorithm for Doping Profile Optimization in Semiconductors Design. In: Hart, E., McEwan, C., Timmis, J., Hone, A. (eds) Artificial Immune Systems. ICARIS 2010. Lecture Notes in Computer Science, vol 6209. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14547-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14547-6_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14546-9

  • Online ISBN: 978-3-642-14547-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics