Skip to main content

GAIS: A Gaussian Artificial Immune System for Continuous Optimization

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6209))

Abstract

This paper proposes a Gaussian Artificial Immune System (GAIS) to deal effectively with building blocks (high-quality partial solutions coded in the solution vector) in continuous optimization problems. By replacing the mutation and cloning operators with a probabilistic model, more specifically a Gaussian network representing the joint distribution of promising solutions, GAIS takes into account the relationships among the variables of the problem, avoiding the disruption of already obtained high-quality partial solutions. Two versions of the algorithm were developed. In the first one, the estimation of the joint probability distribution is achieved by means of a single multivariate Gaussian distribution. In the second version, the estimation is carried out using a Gaussian mixture model. The algorithms were applied to eight benchmarks and the results compared with those produced by an immune-inspired algorithm and an estimation of distribution algorithm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Timmis, J., Hone, A., Stibor, T., Clark, E.: Theoretical advances in artificial immune systems. Theoretical Computer Science 403(1), 11–32 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. de Castro, L.N., Timmis, J.: An Introduction to Artificial Immune Systems: A New Computational Intelligence Paradigm. Springer, Heidelberg (2002)

    Google Scholar 

  3. Dasgupta, D. (ed.): Artificial Immune Systems and Their Applications. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  4. de Castro, L.N., Von Zuben, F.J.: Learning and optimization using the clonal selection principle. IEEE Trans. Evolutionary Computation 6(3), 239–251 (2002)

    Article  Google Scholar 

  5. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT Press, Cambridge (1992)

    Google Scholar 

  6. Castro, P.A.D., Von Zuben, F.J.: BAIS: A Bayesian Artificial Immune System for the effective handling of building blocks. Information Sciences 179(10), 1426–1440 (2009)

    Article  Google Scholar 

  7. Castro, P.A.D., Von Zuben, F.J.: Feature subset selection by means of a Bayesian artificial immune system. In: Proc. Eighth International Conference on Hybrid Intelligent Systems, pp. 561–566 (2008)

    Google Scholar 

  8. Castro, P.A.D., Von Zuben, F.J.: MOBAIS: A Bayesian artificial immune system for multi-objective optimization. In: Bentley, P.J., Lee, D., Jung, S. (eds.) ICARIS 2008. LNCS, vol. 5132, pp. 48–59. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Castro, P.A.D., Von Zuben, F.J.: Multi-objective Bayesian artificial immune system: Empirical evaluation and comparative analyses. Journal of Mathematical Modelling and Algorithms 1, 151–173 (2009)

    Article  MathSciNet  Google Scholar 

  10. Castro, P.A.D., Von Zuben, F.J.: Multi-objective feature selection using a Bayesian artificial immune system. Journal of Intelligent Computing and Cybernetics (2010) (in press)

    Google Scholar 

  11. Dasgupta, D.: Advances in Artificial Immune Systems. IEEE Computational Intelligence Magazine, 40–49 (2006)

    Google Scholar 

  12. Ada, G.L., Nossal, G.J.V.: The clonal selection theory. Scientific American 257(2), 50–57 (1987)

    Article  Google Scholar 

  13. Jerne, N.K.: Towards a network theory of the immune system. Ann. Immunol. (Inst. Pasteur) 125C, 373–389 (1974)

    Google Scholar 

  14. Goldberg, D.E., Deb, K., Kargupta, H., Harik, G.: Rapid accurate optimization of difficult problems using fast messy genetic algorithms. In: Proc. of the Fifth Int. Conf. on Genetic Algorithms, pp. 56–64 (1993)

    Google Scholar 

  15. Goldberg, D.E., Korb, G., Deb, K.: Messy genetic algorithms: Motivation, analysis, and first results. Complex Systems, 493–530 (1989)

    Google Scholar 

  16. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  17. Mühlenbein, H., Paass, G.: From recombination of genes to the estimation of distributions I. Binary parameters. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 178–187. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  18. Baluja, S., Davies, S.: Using optimal dependency-trees for combinational optimization. In: Proc. of the 14th Int. Conf. on Machine Learning, pp. 30–38 (1997)

    Google Scholar 

  19. Pelikan, M., Goldberg, D.E., Lobo, F.: A survey of optimization by building and using probabilistic models. Comput. Optim. Appl. 21(1), 5–20 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Pelikan, M.: Probabilistic Model-Building Genetic Algorithms. Springer, Heidelberg (2005)

    Google Scholar 

  21. DelaOssa, L., Gámez, J.A., Mateo, J.L., Puerta, J.: Avoiding premature convergence in estimation of distribution algorithms. In: Proc. of the 11th Congress on Evolutionary Computation, pp. 455–462 (2009)

    Google Scholar 

  22. de Franca, F.O., Coelho, G.P., Von Zuben, F.J.: On the diversity mechanism of opt-aiNet: a comparative study with fitness sharing. In: Proc. of the IEEE Congress on Evolutionary Computation (2010)

    Google Scholar 

  23. Geiger, D., Heckerman, D.: Learning Gaussian Networks. Technical Report MSR-TR-94-10, Microsoft Research (1994)

    Google Scholar 

  24. Lu, Q., Yao, X.: Clustering and learning Gaussian distribution for continuous optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part C 35(2), 195–204 (2005)

    Article  Google Scholar 

  25. Shachter, R.D., Kenley, C.R.: Gaussian influence diagrams. Management Science 35(5), 527–550 (1989)

    Article  Google Scholar 

  26. Ripley, B.D.: Stochastic simulation. John Wiley & Sons, Chichester (1987)

    Book  MATH  Google Scholar 

  27. Bosman, P., Thierens, D.: Expanding from discrete to continuous estimation of distribution algorithms: The IDEA. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 767–776. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  28. Hartigan, J.A.: Clustering algorithms. Wiley, New York (1975)

    MATH  Google Scholar 

  29. de Castro, L.N., Timmis, J.: An artificial immune network for multimodal function optimization. In: Proc. of the 2002 Congress on Evolutionary Computation, pp. 699–704 (2002)

    Google Scholar 

  30. Broom, B., Subramanian, D.: Computational methods for learning Bayesian networks from high-throughput biological data. In: Bayesian inference for gene expression and proteomics. Cambridge University Press, Cambridge (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Castro, P.A.D., Von Zuben, F.J. (2010). GAIS: A Gaussian Artificial Immune System for Continuous Optimization. In: Hart, E., McEwan, C., Timmis, J., Hone, A. (eds) Artificial Immune Systems. ICARIS 2010. Lecture Notes in Computer Science, vol 6209. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14547-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14547-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14546-9

  • Online ISBN: 978-3-642-14547-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics