Skip to main content

Role of the Intestinal Bile Acid Transporters in Bile Acid and Drug Disposition

  • Chapter
  • First Online:
Book cover Drug Transporters

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 201))

Abstract

Membrane transporters expressed by the hepatocyte and enterocyte play critical roles in maintaining the enterohepatic circulation of bile acids, an effective recycling and conservation mechanism that largely restricts these potentially cytotoxic detergents to the intestinal and hepatobiliary compartments. In doing so, the hepatic and enterocyte transport systems ensure a continuous supply of bile acids to be used repeatedly during the digestion of multiple meals throughout the day. Absorption of bile acids from the intestinal lumen and export into the portal circulation is mediated by a series of transporters expressed on the enterocyte apical and basolateral membranes. The ileal apical sodium-dependent bile acid cotransporter (abbreviated ASBT; gene symbol, SLC10A2) is responsible for the initial uptake of bile acids across the enterocyte brush border membrane. The bile acids are then efficiently shuttled across the cell and exported across the basolateral membrane by the heteromeric Organic Solute Transporter, OSTα–OSTβ. This chapter briefly reviews the tissue expression, physiology, genetics, pathophysiology, and transport properties of the ASBT and OSTα–OSTβ. In addition, the chapter discusses the relationship between the intestinal bile acid transporters and drug metabolism, including development of ASBT inhibitors as novel hypocholesterolemic or hepatoprotective agents, prodrug targeting of the ASBT to increase oral bioavailability, and involvement of the intestinal bile acid transporters in drug absorption and drug–drug interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABC:

ATP-binding cassette

ASBT:

Apical-dependent bile acid transporter

BA:

Bile acid

BARI:

Bile acid reabsorption inhibitor

BCRP:

Breast cancer resistance protein

BDDCS:

Biopharmaceutics Drug Disposition Classification System

BLM:

Basolateral membrane

BSEP:

Bile salt export pump

CHO:

Chinese hamster ovary

CM:

Canalicular membrane

FDA:

United States Food and Drug Administration

FGF:

Fibroblast growth factor

FHTG:

Familial Hypertriglyceridemia

FXR:

Farnesoid X-receptor

GWAS:

Genome-Wide Association Study

IBAM:

Idiopathic bile acid malabsorption

ILBP:

Ileal lipid binding protein

LDL:

Low density lipoprotein

MDCK:

Madin-Darby canine kidney

MDR:

Multidrug resistance protein

MRP:

Multidrug resistance-associated protein

norUDCA:

Nor-ursodeoxycholic acid

NTCP:

Na+-taurocholate cotransporting polypeptide

OATP:

Organic anion transporting polypeptide

OMIM:

Online Mendelian Inheritance in Man

OST:

Organic solute transporter

PBAM:

Primary bile acid malabsorption

POSCH:

Program on the Surgical Control of Hyperlipidemias

PSC:

Primary Sclerosing Cholangitis

QSAR:

Quantitative structure–activity relationship

SLC:

Solute carrier

SNP:

Single nucleotide polymorphism

UDCA:

Ursodeoxycholic acid

References

  • (1984) The lipid research clinics coronary primary prevention trial results. I. Reduction in incidence of coronary heart disease. JAMA 251:351–364

    Google Scholar 

  • Aldini R, Roda A, Montagnani M, Polimeni C, Lenzi PL, Cerre C, Galletti G, Roda E (1994) Hepatic uptake and intestinal absorption of bile acids in the rabbit. Eur J Clin Invest 24:691–697

    CAS  PubMed  Google Scholar 

  • Aldini R, Montagnani M, Roda A, Hrelia S, Biagi PL, Roda E (1996) Intestinal absorption of bile acids in the rabbit: different transport rates in jejunum and ileum. Gastroenterology 110:459–468

    CAS  PubMed  Google Scholar 

  • Alpini G, Glaser SS, Rodgers R, Phinizy JL, Robertson WE, Lasater J, Caligiuri A, Tretjak Z, LeSage GD (1997) Functional expression of the apical Na+-dependent bile acid transporter in large but not small rat cholangiocytes. Gastroenterology 113:1734–1740

    CAS  PubMed  Google Scholar 

  • Alpini G, Glaser S, Baiocchi L, Francis H, Xia X, Lesage G (2005) Secretin activation of the apical Na+-dependent bile acid transporter is associated with cholehepatic shunting in rats. Hepatology 41:1037–1045

    CAS  PubMed  Google Scholar 

  • Anelli PL, Lattuada L, Lorusso V, Lux G, Morisetti A, Morosini P, Serleti M, Uggeri F (2004) Conjugates of gadolinium complexes to bile acids as hepatocyte-directed contrast agents for magnetic resonance imaging. J Med Chem 47:3629–3641

    CAS  PubMed  Google Scholar 

  • Angelin B, Hershon KS, Brunzell JD (1987) Bile acid metabolism in hereditary forms of hypertriglyceridemia: evidence for an increased synthesis rate in monogenic familial hypertriglyceridemia. Proc Natl Acad Sci U S A 84:5434–5438

    CAS  PubMed  Google Scholar 

  • Annaba F, Sarwar Z, Kumar P, Saksena S, Turner JR, Dudeja PK, Gill RK, Alrefai WA (2008) Modulation of ileal bile acid transporter (ASBT) activity by depletion of plasma membrane cholesterol: association with lipid rafts. Am J Physiol Gastrointest Liver Physiol 294:G489–G497

    CAS  PubMed  Google Scholar 

  • Bakris GL, Fonseca VA, Sharma K, Wright EM (2009) Renal sodium-glucose transport: role in diabetes mellitus and potential clinical implications. Kidney Int 75:1272–1277

    CAS  PubMed  Google Scholar 

  • Balakrishnan A, Polli JE (2006) Apical sodium dependent bile acid transporter (ASBT, SLC10A2): a potential prodrug target. Mol Pharm 3:223–230

    CAS  PubMed  Google Scholar 

  • Balakrishnan A, Wring SA, Coop A, Polli JE (2006a) Influence of charge and steric bulk in the C-24 region on the interaction of bile acids with human apical sodium-dependent bile acid transporter. Mol Pharm 3:282–292

    CAS  PubMed  Google Scholar 

  • Balakrishnan A, Wring SA, Polli JE (2006b) Interaction of native bile acids with human apical sodium-dependent bile acid transporter (hASBT): influence of steroidal hydroxylation pattern and C-24 conjugation. Pharm Res 23:1451–1459

    CAS  PubMed  Google Scholar 

  • Balesaria S, Pell RJ, Abbott LJ, Tasleem A, Chavele KM, Barley NF, Khair U, Simon A, Moriarty KJ, Brydon WG, Walters JR (2008) Exploring possible mechanisms for primary bile acid malabsorption: evidence for different regulation of ileal bile acid transporter transcripts in chronic diarrhoea. Eur J Gastroenterol Hepatol 20:413–422

    CAS  PubMed  Google Scholar 

  • Ballatori N (2005) Biology of a novel organic solute and steroid transporter, OSTalpha–OSTbeta. Exp Biol Med (Maywood) 230:689–698

    CAS  Google Scholar 

  • Ballatori N, Christian WV, Lee JY, Dawson PA, Soroka CJ, Boyer JL, Madejczyk MS, Li N (2005) OSTalpha-OSTbeta: a major basolateral bile acid and steroid transporter in human intestinal, renal, and biliary epithelia. Hepatology 42:1270–1279

    CAS  PubMed  Google Scholar 

  • Ballatori N, Fang F, Christian WV, Li N, Hammond CL (2008) Ostalpha-Ostbeta is required for bile acid and conjugated steroid disposition in the intestine, kidney, and liver. Am J Physiol Gastrointest Liver Physiol 295:G179–G186

    CAS  PubMed  Google Scholar 

  • Banerjee A, Swaan PW (2006) Membrane topology of human ASBT (SLC10A2) determined by dual label epitope insertion scanning mutagenesis. New evidence for seven transmembrane domains. Biochemistry 45:943–953

    CAS  PubMed  Google Scholar 

  • Banerjee A, Ray A, Chang C, Swaan PW (2005) Site-directed mutagenesis and use of bile acid-MTS conjugates to probe the role of cysteines in the human apical sodium-dependent bile acid transporter (SLC10A2). Biochemistry 44:8908–8917

    CAS  PubMed  Google Scholar 

  • Banerjee A, Hussainzada N, Khandelwal A, Swaan PW (2008) Electrostatic and potential cation-pi forces may guide the interaction of extracellular loop III with Na+ and bile acids for human apical Na+-dependent bile acid transporter. Biochem J 410:391–400

    CAS  PubMed  Google Scholar 

  • Baringhaus KH, Matter H, Stengelin S, Kramer W (1999) Substrate specificity of the ileal and the hepatic Na(+)/bile acid cotransporters of the rabbit. II. A reliable 3D QSAR pharmacophore model for the ileal Na(+)/bile acid cotransporter. J Lipid Res 40:2158–2168

    CAS  PubMed  Google Scholar 

  • Battle MA, Bondow BJ, Iverson MA, Adams SJ, Jandacek RJ, Tso P, Duncan SA (2008) GATA4 is essential for jejunal function in mice. Gastroenterology 135:1671–1686

    Google Scholar 

  • Bays HE, Goldberg RB (2007) The ‘forgotten’ bile acid sequestrants: is now a good time to remember? Am J Ther 14:567–580

    PubMed  Google Scholar 

  • Bergheim I, Harsch S, Mueller O, Schimmel S, Fritz P, Stange EF (2006) Apical sodium bile acid transporter and ileal lipid binding protein in gallstone carriers. J Lipid Res 47:42–50

    CAS  PubMed  Google Scholar 

  • Bhat BG, Rapp SR, Beaudry JA, Napawan N, Butteiger DN, Hall KA, Null CL, Luo Y, Keller BT (2003) Inhibition of ileal bile acid transport and reduced atherosclerosis in apoE−/− mice by SC-435. J Lipid Res 44:1614–1621

    CAS  PubMed  Google Scholar 

  • Bhat L, Jandeleit B, Dias TM, Moors TL, Gallop MA (2005) Synthesis and biological evaluation of novel steroidal pyrazoles as substrates for bile acid transporters. Bioorg Med Chem Lett 15:85–87

    CAS  PubMed  Google Scholar 

  • Booker ML (2001) S-8921 (Shionogi). Curr Opin Investig Drugs 2:393–395

    CAS  PubMed  Google Scholar 

  • Bosse T, Piaseckyj CM, Burghard E, Fialkovich JJ, Rajagopal S, Pu WT, Krasinski SD (2006) Gata4 is essential for the maintenance of jejunal-ileal identities in the adult mouse small intestine. Mol Cell Biol 26:9060–9070

    CAS  PubMed  Google Scholar 

  • Boyer JL, Trauner M, Mennone A, Soroka CJ, Cai SY, Moustafa T, Zollner G, Lee JY, Ballatori N (2006) Upregulation of a basolateral FXR-dependent bile acid efflux transporter OSTalpha-OSTbeta in cholestasis in humans and rodents. Am J Physiol Gastrointest Liver Physiol 290:G1124–G1130

    CAS  PubMed  Google Scholar 

  • Brink MA, Mendez-Sanchez N, Carey MC (1996) Bilirubin cycles enterohepatically after ileal resection in the rat. Gastroenterology 110:1945–1957

    CAS  PubMed  Google Scholar 

  • Brink MA, Slors JF, Keulemans YC, Mok KS, De Waart DR, Carey MC, Groen AK, Tytgat GN (1999) Enterohepatic cycling of bilirubin: a putative mechanism for pigment gallstone formation in ileal Crohn’ disease. Gastroenterology 116:1420–1427

    CAS  PubMed  Google Scholar 

  • Briz O, Serrano MA, Rebollo N, Hagenbuch B, Meier PJ, Koepsell H, Marin JJ (2002) Carriers involved in targeting the cytostatic bile acid-cisplatin derivatives cis-diammine-chloro-cholylglycinate-platinum(II) and cis-diammine-bisursodeoxycholate-platinum(II) toward liver cells. Mol Pharmacol 61:853–860

    CAS  PubMed  Google Scholar 

  • Brown MS, Goldstein JL (1986) A receptor-mediated pathway for cholesterol homeostasis. Science 232:34–47

    CAS  PubMed  Google Scholar 

  • Brown JM, Bell TA 3rd, Alger HM, Sawyer JK, Smith TL, Kelley K, Shah R, Wilson MD, Davis MA, Lee RG, Graham MJ, Crooke RM, Rudel LL (2008) Targeted depletion of hepatic ACAT2-driven cholesterol esterification reveals a non-biliary route for fecal neutral sterol loss. J Biol Chem 283:10522–10534

    CAS  PubMed  Google Scholar 

  • Buchwald H, Varco RL, Matts JP, Long JM, Fitch LL, Campbell GS, Pearce MB, Yellin AE, Edmiston WA, Smink RD Jr et al (1990) Effect of partial ileal bypass surgery on mortality and morbidity from coronary heart disease in patients with hypercholesterolemia. Report of the Program on the Surgical Control of the Hyperlipidemias (POSCH). N Engl J Med 323:946–955

    CAS  PubMed  Google Scholar 

  • Bundy R, Mauskopf J, Walker JT, Lack L (1977) Interaction of uncharged bile salt derivatives with the ileal bile salt transport system. J Lipid Res 18:389–395

    CAS  PubMed  Google Scholar 

  • Camilleri M, Nadeau A, Tremaine WJ, Lamsam J, Burton D, Odunsi S, Sweetser S, Singh R (2009) Measurement of serum 7alpha-hydroxy-4-cholesten-3-one (or 7alphaC4), a surrogate test for bile acid malabsorption in health, ileal disease and irritable bowel syndrome using liquid chromatography-tandem mass spectrometry. Neurogastroenterol Motil 21:e734–e743

    Google Scholar 

  • Chignard N, Mergey M, Veissiere D, Parc R, Capeau J, Poupon R, Paul A, Housset C (2001) Bile acid transport and regulating functions in the human biliary epithelium. Hepatology 33:496–503

    CAS  PubMed  Google Scholar 

  • Christie DM, Dawson PA, Thevananther S, Shneider BL (1996) Comparative analysis of the ontogeny of a sodium-dependent bile acid transporter in rat kidney and ileum. Am J Physiol 271:G377–G385

    CAS  PubMed  Google Scholar 

  • Corbett CL, Bartholomew TC, Billing BH, Summerfield JA (1981) Urinary excretion of bile acids in cholestasis: evidence for renal tubular secretion in man. Clin Sci (Lond) 61:773–780

    CAS  Google Scholar 

  • Craddock AL, Love MW, Daniel RW, Kirby LC, Walters HC, Wong MH, Dawson PA (1998) Expression and transport properties of the human ileal and renal sodium-dependent bile acid transporter. Am J Physiol 274:G157–G169

    CAS  PubMed  Google Scholar 

  • Davis AP (2007) Bile acid scaffolds in supramolecular chemistry: the interplay of design and synthesis. Molecules 12:2106–2122

    CAS  PubMed  Google Scholar 

  • Davis RA, Attie AD (2008) Deletion of the ileal basolateral bile acid transporter identifies the cellular sentinels that regulate the bile acid pool. Proc Natl Acad Sci U S A 105:4965–4966

    CAS  PubMed  Google Scholar 

  • Dawson PA, Oelkers P (1995) Bile acid transporters. Curr Opin Lipidol 6:109–114

    CAS  PubMed  Google Scholar 

  • Dawson PA, Haywood J, Craddock AL, Wilson M, Tietjen M, Kluckman K, Maeda N, Parks JS (2003) Targeted deletion of the ileal bile acid transporter eliminates enterohepatic cycling of bile acids in mice. J Biol Chem 278:33920–33927

    CAS  PubMed  Google Scholar 

  • Dawson PA, Hubbert M, Haywood J, Craddock AL, Zerangue N, Christian WV, Ballatori N (2005) The heteromeric organic solute transporter alpha-beta, Ostalpha-Ostbeta, is an ileal basolateral bile acid transporter. J Biol Chem 280:6960–6968

    CAS  PubMed  Google Scholar 

  • Dawson PA, Lan T, Rao A (2009) Bile acid transporters. J Lipid Res 50:2340–2357

    CAS  PubMed  Google Scholar 

  • De Witt EH, Lack L (1980) Effects of sulfation patterns on intestinal transport of bile salt sulfate esters. Am J Physiol 238:G34–G39

    PubMed  Google Scholar 

  • Dietschy JM (1968) Mechanisms for the intestinal absorption of bile acids. J Lipid Res 9:297–309

    CAS  PubMed  Google Scholar 

  • Dietschy JM, Turley SD (2002) Control of cholesterol turnover in the mouse. J Biol Chem 277:3801–3804

    CAS  PubMed  Google Scholar 

  • Dietschy JM, Turley SD, Spady DK (1993) Role of liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans. J Lipid Res 34:1637–1659

    CAS  PubMed  Google Scholar 

  • Duane WC, Hartich LA, Bartman AE, Ho SB (2000) Diminished gene expression of ileal apical sodium bile acid transporter explains impaired absorption of bile acid in patients with hypertriglyceridemia. J Lipid Res 41:1384–1389

    CAS  PubMed  Google Scholar 

  • Elsner R, Ziegler K (1989) Determination of the apparent functional molecular mass of the hepatocellular sodium-dependent taurocholate transporter by radiation inactivation. Biochim Biophys Acta 983:113–117

    CAS  PubMed  Google Scholar 

  • Fagerholm U (2008) Prediction of human pharmacokinetics-biliary and intestinal clearance and enterohepatic circulation. J Pharm Pharmacol 60:535–542

    CAS  PubMed  Google Scholar 

  • Farivar S, Fromm H, Schindler D, McJunkin B, Schmidt F (1980) Tests of bile-acid and vitamin B12 metabolism in ileal Crohn’s disease. Am J Clin Pathol 73:69–74

    CAS  PubMed  Google Scholar 

  • Fickert P, Wagner M, Marschall HU, Fuchsbichler A, Zollner G, Tsybrovskyy O, Zatloukal K, Liu J, Waalkes MP, Cover C, Denk H, Hofmann AF, Jaeschke H, Trauner M (2006) 24-norUrsodeoxycholic acid is superior to ursodeoxycholic acid in the treatment of sclerosing cholangitis in Mdr2 (Abcb4) knockout mice. Gastroenterology 130:465–481

    CAS  PubMed  Google Scholar 

  • Frankenberg T, Rao A, Chen F, Haywood J, Shneider BL, Dawson PA (2006) Regulation of the mouse organic solute transporter alpha-beta, Ostalpha-Ostbeta, by bile acids. Am J Physiol Gastrointest Liver Physiol 290:G912–G922

    CAS  PubMed  Google Scholar 

  • Fujisawa T, Kimura A, Ushijima K, Nakashima E, Inoue T, Yamashita Y, Kato H (1998) Intestinal absorption of ursodeoxycholic acid in children and adolescents with inflammatory bowel disease. J Pediatr Gastroenterol Nutr 26:279–285

    CAS  PubMed  Google Scholar 

  • Galman C, Ostlund-Lindqvist AM, Bjorquist A, Schreyer S, Svensson L, Angelin B, Rudling M (2003) Pharmacological interference with intestinal bile acid transport reduces plasma cholesterol in LDL receptor/apoE deficiency. FASEB J 17:265–267

    PubMed  Google Scholar 

  • Geyer J, Wilke T, Petzinger E (2006) The solute carrier family SLC10: more than a family of bile acid transporters regarding function and phylogenetic relationships. Naunyn Schmiedebergs Arch Pharmacol 372:413–431

    CAS  PubMed  Google Scholar 

  • Geyer J, Doring B, Meerkamp K, Ugele B, Bakhiya N, Fernandes CF, Godoy JR, Glatt H, Petzinger E (2007) Cloning and functional characterization of human sodium-dependent organic anion transporter (SLC10A6). J Biol Chem 282:19728–19741

    CAS  PubMed  Google Scholar 

  • Glaser SS, Alpini G (2009) Activation of the cholehepatic shunt as a potential therapy for primary sclerosing cholangitis. Hepatology 49:1795–1797

    CAS  PubMed  Google Scholar 

  • Gonzalez PM, Acharya C, Mackerell AD Jr, Polli JE (2009) Inhibition requirements of the human apical sodium-dependent bile acid transporter (hASBT) using aminopiperidine conjugates of glutamyl-bile acids. Pharm Res 26:1665–1678

    CAS  PubMed  Google Scholar 

  • Gurantz D, Schteingart CD, Hagey LR, Steinbach JH, Grotmol T, Hofmann AF (1991) Hypercholeresis induced by unconjugated bile acid infusion correlates with recovery in bile of unconjugated bile acids. Hepatology 13:540–550

    CAS  PubMed  Google Scholar 

  • Hagenbuch B, Dawson P (2004) The sodium bile salt cotransport family SLC10. Pflugers Arch 447:566–570

    CAS  PubMed  Google Scholar 

  • Hagenbuch B, Meier PJ (1994) Molecular cloning, chromosomal localization, and functional characterization of a human liver Na+/bile acid cotransporter. J Clin Invest 93:1326–1331

    CAS  PubMed  Google Scholar 

  • Hagenbuch B, Stieger B, Foguet M, Lubbert H, Meier PJ (1991) Functional expression cloning and characterization of the hepatocyte Na+/bile acid cotransport system. Proc Natl Acad Sci U S A 88:10629–10633

    CAS  PubMed  Google Scholar 

  • Halilbasic E, Fiorotto R, Fickert P, Marschall HU, Moustafa T, Spirli C, Fuchsbichler A, Gumhold J, Silbert D, Zatloukal K, Langner C, Maitra U, Denk H, Hofmann AF, Strazzabosco M, Trauner M (2009) Side chain structure determines unique physiologic and therapeutic properties of norursodeoxycholic acid in Mdr2−/− mice. Hepatology 49:1972–1981

    CAS  PubMed  Google Scholar 

  • Hallen S, Branden M, Dawson PA, Sachs G (1999) Membrane insertion scanning of the human ileal sodium/bile acid co-transporter. Biochemistry 38:11379–11388

    CAS  PubMed  Google Scholar 

  • Hallen S, Fryklund J, Sachs G (2000) Inhibition of the human sodium/bile acid cotransporters by side-specific methanethiosulfonate sulfhydryl reagents: substrate-controlled accessibility of site of inactivation. Biochemistry 39:6743–6750

    CAS  PubMed  Google Scholar 

  • Hallen S, Mareninova O, Branden M, Sachs G (2002) Organization of the membrane domain of the human liver sodium/bile acid cotransporter. Biochemistry 41:7253–7266

    CAS  PubMed  Google Scholar 

  • Hara S, Higaki J, Higashino K, Iwai M, Takasu N, Miyata K, Tonda K, Nagata K, Goh Y, Mizui T (1997) S-8921, an ileal Na+/bile acid cotransporter inhibitor decreases serum cholesterol in hamsters. Life Sci 60:PL365–PL370

    CAS  Google Scholar 

  • Hatch M, Freel RW (2008) The roles and mechanisms of intestinal oxalate transport in oxalate homeostasis. Semin Nephrol 28:143–151

    CAS  PubMed  Google Scholar 

  • Heubi JE, Balistreri WF, Fondacaro JD, Partin JC, Schubert WK (1982) Primary bile acid malabsorption: defective in vitro ileal active bile acid transport. Gastroenterology 83:804–811

    CAS  PubMed  Google Scholar 

  • Higaki J, Hara S, Takasu N, Tonda K, Miyata K, Shike T, Nagata K, Mizui T (1998) Inhibition of ileal Na+/bile acid cotransporter by S-8921 reduces serum cholesterol and prevents atherosclerosis in rabbits. Arterioscler Thromb Vasc Biol 18:1304–1311

    CAS  PubMed  Google Scholar 

  • Ho RH, Leake BF, Roberts RL, Lee W, Kim RB (2004) Ethnicity-dependent polymorphism in Na+-taurocholate cotransporting polypeptide (SLC10A1) reveals a domain critical for bile acid substrate recognition. J Biol Chem 279:7213–7222

    CAS  PubMed  Google Scholar 

  • Ho RH, Tirona RG, Leake BF, Glaeser H, Lee W, Lemke CJ, Wang Y, Kim RB (2006) Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology 130:1793–1806

    CAS  PubMed  Google Scholar 

  • Hofmann AF, Hagey LR (2008) Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell Mol Life Sci 65:2461–2483

    CAS  PubMed  Google Scholar 

  • Hofmann AF, Poley JR (1972) Role of bile acid malabsorption in pathogenesis of diarrhea and steatorrhea in patients with ileal resection. I. Response to cholestyramine or replacement of dietary long chain triglyceride by medium chain triglyceride. Gastroenterology 62:918–934

    CAS  PubMed  Google Scholar 

  • Hofmann AF, Molino G, Milanese M, Belforte G (1983) Description and simulation of a physiological pharmacokinetic model for the metabolism and enterohepatic circulation of bile acids in man. Cholic acid in healthy man. J Clin Invest 71:1003–1022

    CAS  PubMed  Google Scholar 

  • Hofmann AF, Zakko SF, Lira M, Clerici C, Hagey LR, Lambert KK, Steinbach JH, Schteingart CD, Olinga P, Groothuis GM (2005) Novel biotransformation and physiological properties of norursodeoxycholic acid in humans. Hepatology 42:1391–1398

    CAS  PubMed  Google Scholar 

  • Hofmann AF, Hagey LR, Krasowski MD (2010) Bile salts of vertebrates: structural variation and possible evolutionary significance. J Lipid Res 51:226–246

    CAS  PubMed  Google Scholar 

  • Holzer A, Harsch S, Renner O, Strohmeyer A, Schimmel S, Wehkamp J, Fritz P, Stange EF (2008) Diminished expression of apical sodium-dependent bile acid transporter in gallstone disease is independent of ileal inflammation. Digestion 78:52–59

    CAS  PubMed  Google Scholar 

  • Hruz P, Zimmermann C, Gutmann H, Degen L, Beuers U, Terracciano L, Drewe J, Beglinger C (2006) Adaptive regulation of the ileal apical sodium dependent bile acid transporter (ASBT) in patients with obstructive cholestasis. Gut 55:395–402

    CAS  PubMed  Google Scholar 

  • Huang HC, Tremont SJ, Lee LF, Keller BT, Carpenter AJ, Wang CC, Banerjee SC, Both SR, Fletcher T, Garland DJ, Huang W, Jones C, Koeller KJ, Kolodziej SA, Li J, Manning RE, Mahoney MW, Miller RE, Mischke DA, Rath NP, Reinhard EJ, Tollefson MB, Vernier WF, Wagner GM, Rapp SR, Beaudry J, Glenn K, Regina K, Schuh JR, Smith ME, Trivedi JS, Reitz DB (2005) Discovery of potent, nonsystemic apical sodium-codependent bile acid transporter inhibitors (Part 2). J Med Chem 48:5853–5868

    CAS  PubMed  Google Scholar 

  • Huff MW, Telford DE, Edwards JY, Burnett JR, Barrett PH, Rapp SR, Napawan N, Keller BT (2002) Inhibition of the apical sodium-dependent bile acid transporter reduces LDL cholesterol and apoB by enhanced plasma clearance of LDL apoB. Arterioscler Thromb Vasc Biol 22:1884–1891

    CAS  PubMed  Google Scholar 

  • Hulzebos CV, Renfurm L, Bandsma RH, Verkade HJ, Boer T, Boverhof R, Tanaka H, Mierau I, Sauer PJ, Kuipers F, Stellaard F (2001) Measurement of parameters of cholic acid kinetics in plasma using a microscale stable isotope dilution technique: application to rodents and humans. J Lipid Res 42:1923–1929

    CAS  PubMed  Google Scholar 

  • Hussainzada N, Banerjee A, Swaan PW (2006) Transmembrane domain VII of the human apical sodium-dependent bile acid transporter ASBT (SLC10A2) lines the substrate translocation pathway. Mol Pharmacol 70:1565–1574

    CAS  PubMed  Google Scholar 

  • Hussainzada N, Khandewal A, Swaan PW (2008) Conformational flexibility of helix VI is essential for substrate permeation of the human apical sodium-dependent bile acid transporter. Mol Pharmacol 73:305–313

    CAS  PubMed  Google Scholar 

  • Hussainzada N, Claro Da Silva T, Swaan PW (2009) The cytosolic half of helix III forms the substrate exit route during permeation events of the sodium/bile acid cotransporter ASBT. Biochemistry 48:8528–8539

    CAS  PubMed  Google Scholar 

  • Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL, McDonald JG, Luo G, Jones SA, Goodwin B, Richardson JA, Gerard RD, Repa JJ, Mangelsdorf DJ, Kliewer SA (2005) Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2:217–225

    CAS  PubMed  Google Scholar 

  • Johnson AD, Kavousi M, Smith AV, Chen MH, Dehghan A, Aspelund T, Lin JP, van Duijn CM, Harris TB, Cupples LA, Uitterlinden AG, Launer L, Hofman A, Rivadeneira F, Stricker B, Yang Q, O'Donnell CJ, Gudnason V, Witteman JC (2009) Genome-wide association meta-analysis for total serum bilirubin levels. Hum Mol Genet 18:2700–2710

    CAS  PubMed  Google Scholar 

  • Jung D, Inagaki T, Gerard RD, Dawson PA, Kliewer SA, Mangelsdorf DJ, Moschetta A (2007) FXR agonists and FGF15 reduce fecal bile acid excretion in a mouse model of bile acid malabsorption. J Lipid Res 48:2693–2700

    CAS  PubMed  Google Scholar 

  • Kagedahl M, Swaan PW, Redemann CT, Tang M, Craik CS, Szoka FC Jr, Oie S (1997) Use of the intestinal bile acid transporter for the uptake of cholic acid conjugates with HIV-1 protease inhibitory activity. Pharm Res 14:176–180

    CAS  PubMed  Google Scholar 

  • Kapadia CR, Essandoh LK (1988) Active absorption of vitamin B12 and conjugated bile salts by guinea pig ileum occurs in villous and not crypt cells. Dig Dis Sci 33:1377–1382

    CAS  PubMed  Google Scholar 

  • Khantwal CM, Swaan PW (2008) Cytosolic half of transmembrane domain IV of the human bile acid transporter hASBT (SLC10A2) forms part of the substrate translocation pathway. Biochemistry 47:3606–3614

    CAS  PubMed  Google Scholar 

  • Kitayama K, Nakai D, Kono K, van der Hoop AG, Kurata H, de Wit EC, Cohen LH, Inaba T, Kohama T (2006) Novel non-systemic inhibitor of ileal apical Na+-dependent bile acid transporter reduces serum cholesterol levels in hamsters and monkeys. Eur J Pharmacol 539:89–98

    CAS  PubMed  Google Scholar 

  • Kok T, Hulzebos CV, Wolters H, Havinga R, Agellon LB, Stellaard F, Shan B, Schwarz M, Kuipers F (2003) Enterohepatic circulation of bile salts in farnesoid X receptor-deficient mice: efficient intestinal bile salt absorption in the absence of ileal bile acid-binding protein. J Biol Chem 278:41930–41937

    CAS  PubMed  Google Scholar 

  • Krag B, Krag B (1976) Regional ileitis (Crohn’s disease): I. Kinetics of bile acid absorption in the perfused ileum. Scand J Gastroenterol 11:481–486

    CAS  PubMed  Google Scholar 

  • Krag E, Phillips SF (1974) Active and passive bile acid absorption in man. Perfusion studies of the ileum and jejunum. J Clin Invest 53:1686–1694

    CAS  PubMed  Google Scholar 

  • Kramer W, Glombik H (2006) Bile acid reabsorption inhibitors (BARI): novel hypolipidemic drugs. Curr Med Chem 13:997–1016

    CAS  PubMed  Google Scholar 

  • Kramer W, Wess G (1996) Bile acid transport systems as pharmaceutical targets. Eur J Clin Invest 26:715–732

    CAS  PubMed  Google Scholar 

  • Kramer W, Bickel U, Buscher HP, Gerok W, Kurz G (1982) Bile-salt-binding polypeptides in plasma membranes of hepatocytes revealed by photoaffinity labelling. Eur J Biochem 129:13–24

    CAS  PubMed  Google Scholar 

  • Kramer W, Wess G, Schubert G, Bickel M, Girbig F, Gutjahr U, Kowalewski S, Baringhaus KH, Enhsen A, Glombik H et al (1992) Liver-specific drug targeting by coupling to bile acids. J Biol Chem 267:18598–18604

    CAS  PubMed  Google Scholar 

  • Kramer W, Girbig F, Gutjahr U, Kowalewski S, Jouvenal K, Muller G, Tripier D, Wess G (1993) Intestinal bile acid absorption. Na(+)-dependent bile acid transport activity in rabbit small intestine correlates with the coexpression of an integral 93-kDa and a peripheral 14-kDa bile acid-binding membrane protein along the duodenum-ileum axis. J Biol Chem 268:18035–18046

    CAS  PubMed  Google Scholar 

  • Kramer W, Wess G, Enhsen A, Bock K, Falk E, Hoffmann A, Neckermann G, Gantz D, Schulz S, Nickau L et al (1994a) Bile acid derived HMG-CoA reductase inhibitors. Biochim Biophys Acta 1227:137–154

    PubMed  Google Scholar 

  • Kramer W, Wess G, Neckermann G, Schubert G, Fink J, Girbig F, Gutjahr U, Kowalewski S, Baringhaus KH, Boger G et al (1994b) Intestinal absorption of peptides by coupling to bile acids. J Biol Chem 269:10621–10627

    CAS  PubMed  Google Scholar 

  • Kramer W, Girbig F, Gutjahr U, Kowalewski S (1995) Radiation-inactivation analysis of the Na+/bile acid co-transport system from rabbit ileum. Biochem J 306(Pt 1):241–246

    CAS  PubMed  Google Scholar 

  • Kramer W, Wess G, Bewersdorf U, Corsiero D, Girbig F, Weyland C, Stengelin S, Enhsen A, Bock K, Kleine H, Le Dreau MA, Schafer HL (1997) Topological photoaffinity labeling of the rabbit ileal Na+/bile-salt-cotransport system. Eur J Biochem 249:456–464

    CAS  PubMed  Google Scholar 

  • Kramer W, Corsiero D, Friedrich M, Girbig F, Stengelin S, Weyland C (1998) Intestinal absorption of bile acids: paradoxical behaviour of the 14 kDa ileal lipid-binding protein in differential photoaffinity labelling. Biochem J 333(Pt 2):335–341

    CAS  PubMed  Google Scholar 

  • Kramer W, Stengelin S, Baringhaus KH, Enhsen A, Heuer H, Becker W, Corsiero D, Girbig F, Noll R, Weyland C (1999) Substrate specificity of the ileal and the hepatic Na(+)/bile acid cotransporters of the rabbit. I. Transport studies with membrane vesicles and cell lines expressing the cloned transporters. J Lipid Res 40:1604–1617

    CAS  PubMed  Google Scholar 

  • Kramer W, Girbig F, Glombik H, Corsiero D, Stengelin S, Weyland C (2001) Identification of a ligand-binding site in the Na+/bile acid cotransporting protein from rabbit ileum. J Biol Chem 276:36020–36027

    CAS  PubMed  Google Scholar 

  • Kuhajda K, Kevresan S, Kandrac J, Fawcett JP, Mikov M (2006) Chemical and metabolic transformations of selected bile acids. Eur J Drug Metab Pharmacokinet 31:179–235

    CAS  PubMed  Google Scholar 

  • Kullak-Ublick GA, Glasa J, Boker C, Oswald M, Grutzner U, Hagenbuch B, Stieger B, Meier PJ, Beuers U, Kramer W, Wess G, Paumgartner G (1997) Chlorambucil-taurocholate is transported by bile acid carriers expressed in human hepatocellular carcinomas. Gastroenterology 113:1295–1305

    CAS  PubMed  Google Scholar 

  • Kurata H, Suzuki S, Ohhata Y, Ikeda T, Hasegawa T, Kitayama K, Inaba T, Kono K, Kohama T (2004) A novel class of apical sodium-dependent bile acid transporter inhibitors: the amphiphilic 4-oxo-1-phenyl-1, 4-dihydroquinoline derivatives. Bioorg Med Chem Lett 14:1183–1186

    CAS  PubMed  Google Scholar 

  • Lack L (1979) Properties and biological significance of the ileal bile salt transport system. Environ Health Perspect 33:79–90

    CAS  PubMed  Google Scholar 

  • Lack L, Weiner IM (1966) Intestinal bile salt transport: structure-activity relationships and other properties. Am J Physiol 210:1142–1152

    CAS  PubMed  Google Scholar 

  • Lack L, Walker JT, Singletary GD (1970) Ileal bile salt transport: in vivo studies of effect of substrate ionization on activity. Am J Physiol 219:487–490

    CAS  PubMed  Google Scholar 

  • Landrier JF, Eloranta JJ, Vavricka SR, Kullak-Ublick GA (2006) The nuclear receptor for bile acids, FXR, transactivates human organic solute transporter-alpha and -beta genes. Am J Physiol Gastrointest Liver Physiol 290:G476–G485

    CAS  PubMed  Google Scholar 

  • Lazaridis K, Pham L, Tietz P, Marinelli R, deGroen P, Levine S, Dawson P, LaRusso N (1997) Rat cholangiocytes absorb bile acids at their apical domain via the ileal sodium-dependent bile acid transporter. J Clin Invest 100:2714–2721

    CAS  PubMed  Google Scholar 

  • Lennernas H (2007) Intestinal permeability and its relevance for absorption and elimination. Xenobiotica 37:1015–1051

    CAS  PubMed  Google Scholar 

  • Lewis MC, Root C (1990) In vivo transport kinetics and distribution of taurocholate by rat ileum and jejunum. Am J Physiol 259:G233–G238

    CAS  PubMed  Google Scholar 

  • Lewis MC, Brieaddy LE, Root C (1995) Effects of 2164U90 on ileal bile acid absorption and serum cholesterol in rats and mice. J Lipid Res 36:1098–1105

    CAS  PubMed  Google Scholar 

  • Li N, Cui Z, Fang F, Lee JY, Ballatori N (2007) Heterodimerization, trafficking and membrane topology of the two proteins, Ost alpha and Ost beta, that constitute the organic solute and steroid transporter. Biochem J 407:363–372

    CAS  PubMed  Google Scholar 

  • Lin MC, Kramer W, Wilson FA (1990) Identification of cytosolic and microsomal bile acid-binding proteins in rat ileal enterocytes. J Biol Chem 265:14986–14995

    CAS  PubMed  Google Scholar 

  • Love MW, Craddock AL, Angelin B, Brunzell JD, Duane WC, Dawson PA (2001) Analysis of the ileal bile acid transporter gene, SLC10A2, in subjects with familial hypertriglyceridemia. Arterioscler Thromb Vasc Biol 21:2039–2045

    CAS  PubMed  Google Scholar 

  • Macias RI, Monte MJ, El-Mir MY, Villanueva GR, Marin JJ (1998) Transport and biotransformation of the new cytostatic complex cis-diammineplatinum(II)-chlorocholylglycinate (Bamet-R2) by the rat liver. J Lipid Res 39:1792–1798

    CAS  PubMed  Google Scholar 

  • Marcus SN, Schteingart CD, Marquez ML, Hofmann AF, Xia Y, Steinbach JH, Ton-Nu HT, Lillienau J, Angellotti MA, Schmassmann A (1991) Active absorption of conjugated bile acids in vivo. Kinetic parameters and molecular specificity of the ileal transport system in the rat. Gastroenterology 100:212–221

    CAS  PubMed  Google Scholar 

  • Mareninova O, Shin JM, Vagin O, Turdikulova S, Hallen S, Sachs G (2005) Topography of the membrane domain of the liver Na+-dependent bile acid transporter. Biochemistry 44:13702–13712

    CAS  PubMed  Google Scholar 

  • Meier Y, Eloranta JJ, Darimont J, Ismair MG, Hiller C, Fried M, Kullak-Ublick GA, Vavricka SR (2007) Regional distribution of solute carrier mRNA expression along the human intestinal tract. Drug Metab Dispos 35:590–594

    CAS  PubMed  Google Scholar 

  • Meihoff WE, Kern F Jr (1968) Bile salt malabsorption in regional ileitis, ileal resection and mannitol-induced diarrhea. J Clin Invest 47:261–267

    CAS  PubMed  Google Scholar 

  • Montagnani M, Love MW, Rossel P, Dawson PA, Qvist P (2001) Absence of dysfunctional ileal sodium-bile acid cotransporter gene mutations in patients with adult-onset idiopathic bile acid malabsorption. Scand J Gastroenterol 36:1077–1080

    CAS  PubMed  Google Scholar 

  • Montagnani M, Abrahamsson A, Galman C, Eggertsen G, Marschall HU, Ravaioli E, Einarsson C, Dawson PA (2006) Analysis of ileal sodium/bile acid cotransporter and related nuclear receptor genes in a family with multiple cases of idiopathic bile acid malabsorption. World J Gastroenterol 12:7710–7714

    PubMed  Google Scholar 

  • Morgan WA, Nk T, Ding Y (2008) The use of high performance thin-layer chromatography to determine the role of membrane lipid composition in bile salt-induced kidney cell damage. J Pharmacol Toxicol Methods 57:70–73

    CAS  PubMed  Google Scholar 

  • Nyhlin H, Merrick M, Eastwood M (1994) Bile acid malabsorption in Crohn's disease and indications for its assessment using SeHCAT. Gut 35:90–93

    CAS  PubMed  Google Scholar 

  • Oelkers P, Dawson PA (1995) Cloning and chromosomal localization of the human ileal lipid-binding protein. Biochim Biophys Acta 1257:199–202

    PubMed  Google Scholar 

  • Oelkers P, Kirby LC, Heubi JE, Dawson PA (1997) Primary bile acid malabsorption caused by mutations in the ileal sodium-dependent bile acid transporter gene (SLC10A2). J Clin Invest 99:1880–1887

    CAS  PubMed  Google Scholar 

  • Portincasa P, Moschetta A, Palasciano G (2006) Cholesterol gallstone disease. Lancet 368:230–239

    CAS  PubMed  Google Scholar 

  • Rao A, Haywood J, Craddock AL, Belinsky MG, Kruh GD, Dawson PA (2008) The organic solute transporter alpha-beta, Ostalpha-Ostbeta, is essential for intestinal bile acid transport and homeostasis. Proc Natl Acad Sci U S A 105:3891–3896

    CAS  PubMed  Google Scholar 

  • Ray A, Banerjee A, Chang C, Khantwal CM, Swaan PW (2006) Design of novel synthetic MTS conjugates of bile acids for site-directed sulfhydryl labeling of cysteine residues in bile acid binding and transporting proteins. Bioorg Med Chem Lett 16:1473–1476

    CAS  PubMed  Google Scholar 

  • Renner O, Harsch S, Strohmeyer A, Schimmel S, Stange EF (2008) Reduced ileal expression of OSTalpha-OSTbeta in non-obese gallstone disease. J Lipid Res 49:2045–2054

    CAS  PubMed  Google Scholar 

  • Renner O, Harsch S, Schaeffeler E, Schwab M, Klass DM, Kratzer W, Stange EF (2009) Mutation screening of apical sodium-dependent bile acid transporter (SLC10A2): novel haplotype block including six newly identified variants linked to reduced expression. Hum Genet 125:381–391

    CAS  PubMed  Google Scholar 

  • Ricketts ML, Boekschoten MV, Kreeft AJ, Hooiveld GJ, Moen CJ, Muller M, Frants RR, Kasanmoentalib S, Post SM, Princen HM, Porter JG, Katan MB, Hofker MH, Moore DD (2007) The cholesterol-raising factor from coffee beans, cafestol, as an agonist ligand for the farnesoid and pregnane X receptors. Mol Endocrinol 21:1603–1616

    CAS  PubMed  Google Scholar 

  • Root C, Smith CD, Winegar DA, Brieaddy LE, Lewis MC (1995) Inhibition of ileal sodium-dependent bile acid transport by 2164U90. J Lipid Res 36:1106–1115

    CAS  PubMed  Google Scholar 

  • Root C, Smith CD, Sundseth SS, Pink HM, Wilson JG, Lewis MC (2002) Ileal bile acid transporter inhibition, CYP7A1 induction, and antilipemic action of 264W94. J Lipid Res 43:1320–1330

    CAS  PubMed  Google Scholar 

  • Sakamoto S, Kusuhara H, Miyata K, Shimaoka H, Kanazu T, Matsuo Y, Nomura K, Okamura N, Hara S, Horie K, Baba T, Sugiyama Y (2007) Glucuronidation converting methyl 1-(3, 4-dimethoxyphenyl)-3-(3-ethylvaleryl)-4-hydroxy-6, 7, 8-trimethoxy-2-na phthoate (S-8921) to a potent apical sodium-dependent bile acid transporter inhibitor, resulting in a hypocholesterolemic action. J Pharmacol Exp Ther 322:610–618

    CAS  PubMed  Google Scholar 

  • Schiff ER, Small NC, Dietschy JM (1972) Characterization of the kinetics of the passive and active transport mechanisms for bile acid absorption in the small intestine and colon of the rat. J Clin Invest 51:1351–1362

    CAS  PubMed  Google Scholar 

  • Schiller LR, Hogan RB, Morawski SG, Santa Ana CA, Bern MJ, Norgaard RP, Bo-Linn GW, Fordtran JS (1987) Studies of the prevalence and significance of radiolabeled bile acid malabsorption in a group of patients with idiopathic chronic diarrhea. Gastroenterology 92:151–160

    CAS  PubMed  Google Scholar 

  • Seward DJ, Koh AS, Boyer JL, Ballatori N (2003) Functional complementation between a novel mammalian polygenic transport complex and an evolutionarily ancient organic solute transporter, OSTalpha-OSTbeta. J Biol Chem 278:27473–27482

    CAS  PubMed  Google Scholar 

  • Shneider BL, Dawson PA, Christie DM, Hardikar W, Wong MH, Suchy FJ (1995) Cloning and molecular characterization of the ontogeny of a rat ileal sodium-dependent bile acid transporter. J Clin Invest 95:745–754

    CAS  PubMed  Google Scholar 

  • Shugarts S, Benet LZ (2009) The role of transporters in the pharmacokinetics of orally administered drugs. Pharm Res 26:2039–2054

    CAS  PubMed  Google Scholar 

  • Sievanen E (2007) Exploitation of bile acid transport systems in prodrug design. Molecules 12:1859–1889

    CAS  PubMed  Google Scholar 

  • Splinter PL, Lazaridis KN, Dawson PA, LaRusso NF (2006) Cloning and expression of SLC10A4, a putative organic anion transport protein. World J Gastroenterol 12:6797–6805

    CAS  PubMed  Google Scholar 

  • Starke D, Lischka K, Pagels P, Uhlmann E, Kramer W, Wess G, Petzinger E (2001) Bile acid-oligodeoxynucleotide conjugates: synthesis and liver excretion in rats. Bioorg Med Chem Lett 11:945–949

    CAS  PubMed  Google Scholar 

  • Steinmetz KL, Schonder KS (2005) Colesevelam: potential uses for the newest bile resin. Cardiovasc Drug Rev 23:15–30

    CAS  PubMed  Google Scholar 

  • Summerfield JA, Cullen J, Barnes S, Billing BH (1977) Evidence for renal control of urinary excretion of bile acids and bile acid sulphates in the cholestatic syndrome. Clin Sci Mol Med 52:51–65

    CAS  PubMed  Google Scholar 

  • Sun AQ, Balasubramaniyan N, Chen H, Shahid M, Suchy FJ (2006) Identification of functionally relevant residues of the rat ileal apical sodium-dependent bile acid cotransporter. J Biol Chem 281:16410–16418

    CAS  PubMed  Google Scholar 

  • Swaan PW, Hillgren KM, Szoka FC Jr, Oie S (1997a) Enhanced transepithelial transport of peptides by conjugation to cholic acid. Bioconjug Chem 8:520–525

    CAS  PubMed  Google Scholar 

  • Swaan PW, Szoka FC Jr, Oie S (1997b) Molecular modeling of the intestinal bile acid carrier: a comparative molecular field analysis study. J Comput Aided Mol Des 11:581–588

    CAS  PubMed  Google Scholar 

  • Takashima K, Kohno T, Mori T, Ohtani A, Hirakoso K, Takeyama S (1994) The hypocholesterolemic action of TA-7552 and its effects on cholesterol metabolism in the rat. Atherosclerosis 107:247–257

    CAS  PubMed  Google Scholar 

  • Telford DE, Edwards JY, Lipson SM, Sutherland B, Barrett PH, Burnett JR, Krul ES, Keller BT, Huff MW (2003) Inhibition of both the apical sodium-dependent bile acid transporter and HMG-CoA reductase markedly enhances the clearance of LDL apoB. J Lipid Res 44:943–952

    CAS  PubMed  Google Scholar 

  • Tollefson MB, Kolodziej SA, Fletcher TR, Vernier WF, Beaudry JA, Keller BT, Reitz DB (2003) A novel class of apical sodium co-dependent bile acid transporter inhibitors: the 1, 2-benzothiazepines. Bioorg Med Chem Lett 13:3727–3730

    CAS  PubMed  Google Scholar 

  • Tolle-Sander S, Lentz KA, Maeda DY, Coop A, Polli JE (2004) Increased acyclovir oral bioavailability via a bile acid conjugate. Mol Pharm 1:40–48

    CAS  PubMed  Google Scholar 

  • Tougaard L, Giese B, Pedersen B, Binder V (1986) Bile acid metabolism in patients with Crohn’s disease in terminal ileum. Scand J Gastroenterol 21:627–633

    CAS  PubMed  Google Scholar 

  • Tremont SJ, Lee LF, Huang HC, Keller BT, Banerjee SC, Both SR, Carpenter AJ, Wang CC, Garland DJ, Huang W, Jones C, Koeller KJ, Kolodziej SA, Li J, Manning RE, Mahoney MW, Miller RE, Mischke DA, Rath NP, Fletcher T, Reinhard EJ, Tollefson MB, Vernier WF, Wagner GM, Rapp SR, Beaudry J, Glenn K, Regina K, Schuh JR, Smith ME, Trivedi JS, Reitz DB (2005) Discovery of potent, nonsystemic apical sodium-codependent bile acid transporter inhibitors (Part 1). J Med Chem 48:5837–5852

    CAS  PubMed  Google Scholar 

  • van der Veen JN, van Dijk TH, Vrins CL, van Meer H, Havinga R, Bijsterveld K, Tietge UJ, Groen AK, Kuipers F (2009) Activation of the liver X receptor stimulates trans-intestinal excretion of plasma cholesterol. J Biol Chem 284:19211–19219

    PubMed  Google Scholar 

  • van der Velde AE, Vrins CL, van den Oever K, Kunne C, Oude Elferink RP, Kuipers F, Groen AK (2007) Direct intestinal cholesterol secretion contributes significantly to total fecal neutral sterol excretion in mice. Gastroenterology 133:967–975

    PubMed  Google Scholar 

  • Vicens M, Macias RI, Briz O, Rodriguez A, El-Mir MY, Medarde M, Marin JJ (2007) Inhibition of the intestinal absorption of bile acids using cationic derivatives: mechanism and repercussions. Biochem Pharmacol 73:394–404

    CAS  PubMed  Google Scholar 

  • Vitek L, Carey MC (2003) Enterohepatic cycling of bilirubin as a cause of ‘black’ pigment gallstones in adult life. Eur J Clin Invest 33:799–810

    CAS  PubMed  Google Scholar 

  • Vlahcevic ZR, Bell CC Jr, Buhac I, Farrar JT, Swell L (1970) Diminished bile acid pool size in patients with gallstones. Gastroenterology 59:165–173

    CAS  PubMed  Google Scholar 

  • Wang W, Seward DJ, Li L, Boyer JL, Ballatori N (2001a) Expression cloning of two genes that together mediate organic solute and steroid transport in the liver of a marine vertebrate. Proc Natl Acad Sci U S A 98:9431–9436

    CAS  PubMed  Google Scholar 

  • Wang W, Xue S, Ingles SA, Chen Q, Diep AT, Frankl HD, Stolz A, Haile RW (2001b) An association between genetic polymorphisms in the ileal sodium-dependent bile acid transporter gene and the risk of colorectal adenomas. Cancer Epidemiol Biomarkers Prev 10:931–936

    CAS  PubMed  Google Scholar 

  • Weinman SA, Carruth MW, Dawson PA (1998) Bile acid uptake via the human apical sodium-bile acid cotransporter is electrogenic. J Biol Chem 273:34691–34695

    CAS  PubMed  Google Scholar 

  • Wess G, Kramer W, Enhsen A, Glombik H, Baringhaus KH, Boger G, Urmann M, Bock K, Kleine H, Neckermann G et al (1994) Specific inhibitors of ileal bile acid transport. J Med Chem 37:873–875

    CAS  PubMed  Google Scholar 

  • West KL, Zern TL, Butteiger DN, Keller BT, Fernandez ML (2003) SC-435, an ileal apical sodium co-dependent bile acid transporter (ASBT) inhibitor lowers plasma cholesterol and reduces atherosclerosis in guinea pigs. Atherosclerosis 171:201–210

    CAS  PubMed  Google Scholar 

  • Wilson FA, Burckhardt G, Murer H, Rumrich G, Ullrich KJ (1981) Sodium-coupled taurocholate transport in the proximal convolution of the rat kidney in vivo and in vitro. J Clin Invest 67:1141–1150

    CAS  PubMed  Google Scholar 

  • Wong MH, Oelkers P, Craddock AL, Dawson PA (1994) Expression cloning and characterization of the hamster ileal sodium-dependent bile acid transporter. J Biol Chem 269:1340–1347

    CAS  PubMed  Google Scholar 

  • Wong MH, Oelkers P, Dawson PA (1995) Identification of a mutation in the ileal sodium-dependent bile acid transporter gene that abolishes transport activity. J Biol Chem 270:27228–27234

    CAS  PubMed  Google Scholar 

  • Wu CY, Benet LZ (2005) Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res 22:11–23

    CAS  PubMed  Google Scholar 

  • Xia X, Francis H, Glaser S, Alpini G, LeSage G (2006) Bile acid interactions with cholangiocytes. World J Gastroenterol 12:3553–3563

    CAS  PubMed  Google Scholar 

  • Zahner D, Eckhardt U, Petzinger E (2003) Transport of taurocholate by mutants of negatively charged amino acids, cysteines, and threonines of the rat liver sodium-dependent taurocholate cotransporting polypeptide Ntcp. Eur J Biochem 270:1117–1127

    CAS  PubMed  Google Scholar 

  • Zhang EY, Phelps MA, Cheng C, Ekins S, Swaan PW (2002) Modeling of active transport systems. Adv Drug Deliv Rev 54:329–354

    CAS  PubMed  Google Scholar 

  • Zhang EY, Phelps MA, Banerjee A, Khantwal CM, Chang C, Helsper F, Swaan PW (2004) Topology scanning and putative three-dimensional structure of the extracellular binding domains of the apical sodium-dependent bile acid transporter (SLC10A2). Biochemistry 43:11380–11392

    CAS  PubMed  Google Scholar 

  • Zheng X, Ekins S, Raufman JP, Polli JE (2009) Computational models for drug inhibition of the human apical sodium-dependent bile acid transporter. Mol Pharm 6:1591–1603

    CAS  PubMed  Google Scholar 

  • Zollner G, Wagner M, Moustafa T, Fickert P, Silbert D, Gumhold J, Fuchsbichler A, Halilbasic E, Denk H, Marschall HU, Trauner M (2006) Coordinated induction of bile acid detoxification and alternative elimination in mice: role of FXR-regulated organic solute transporter-alpha/beta in the adaptive response to bile acids. Am J Physiol Gastrointest Liver Physiol 290:G923–G932

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

PAD was supported by the National Institutes of Diabetes and Digestive and Kidney Diseases (NIDDK) grant DK047987 and an American Heart Association Mid-Atlantic Affiliate Grant-in-aid. The author thanks Dr. Anuradha Rao for assistance with the figures, valuable suggestions, and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Dawson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Dawson, P.A. (2011). Role of the Intestinal Bile Acid Transporters in Bile Acid and Drug Disposition. In: Fromm, M., Kim, R. (eds) Drug Transporters. Handbook of Experimental Pharmacology, vol 201. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14541-4_4

Download citation

Publish with us

Policies and ethics