Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 390 Accesses

Abstract

In this chapter I will introduce the theoretical concepts and experimental data that are relevant to the study of Sr3Ru2O7 presented in this thesis. From a theoretical point of view the fundamental phenomena of a wide class of correlated electron systems are surprisingly well described by a non-interacting ‘Fermi gas’ theory. One of the first assumptions of this theory is not to take into account any electron–electron interactions besides Pauli’s Exclusion Principle. It is thanks to a theory by Landau [13] that we understand why the results for the Fermi gas also apply qualitatively to strongly interacting Fermi liquids. Since the properties of the metallic ground state of Sr3Ru2O7 in zero magnetic field are well described by the concepts of Landau's Fermi liquid theory I will review its most important results in the first part of this chapter. Indeed the predictions of Landau’s Fermi liquid theory are so robust that it is in particular the systems that go beyond that theory and show non-Fermi liquid behaviour that have attracted a wealth of experimental and theoretical, with the high temperature superconductors of the cuprate [4] and recently iron–pnictide families [5] being but two of the most famous examples. In particular, the concept of quantum criticality has been used experimentally as a route to novel quantum states and will be briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    They are replaced for a spherical Fermi surface by (k x  ± ik y ).

  2. 2.

    The high field limit here is the same as for quantum oscillations.

  3. 3.

    The presented equations only hold for closed Fermi surfaces. Open orbit surfaces require a separate treatment discussed for example in [6].

  4. 4.

    Though I will discuss here the theory primarily in terms of electrons it should be pointed out that it applies to all interacting Fermion systems, such as, for example, liquid 3He.

  5. 5.

    To be more precise it is the logarithmic derivative of the temperature dependent part of the resistivity ρ with respect to temperature T, \(\partial\ln(\rho-\rho_0)/\partial\ln T\), that is shown. Here ρ 0 is the residual resistivity. For more details see [34].

  6. 6.

    Strictly speaking AC magnetic susceptibility is not a thermodynamic probe but frequency dependent.

  7. 7.

    It has to be noted here that the simple addition of the resistivity tensors only holds for closed Fermi surfaces. If open orbits are present, the longitudinal magnetoresistance does not only depend on the magnitude of the applied magnetic field but also crucially on the orientation between the electric field and the open orbit, leading to significant anisotropies in transport. Intriguingly, if domains of different orbital orientations exist in the anomalous phase region that are orientable by a small in-plane magnetic field one would naturally expect ‘nematik-like’ transport properties similar to the ones observed by Borzi et al. To the authors best knowledge though discussed in private communications this path has not been explored in the theoretical literature so far.

References

  1. Landau LD (1956) The theory of a Fermi liquid. JETP 30:1058

    Google Scholar 

  2. Landau LD (1957) Oscillations in a Fermi liquid. JETP 32:59

    Google Scholar 

  3. Landau LD (1958) On the theory of a Fermi liquid. JETP 35:97

    Google Scholar 

  4. Bednorz JG, Müller KA (1986) Possible high-T c superconductivity in the Ba–La–Cu–O system. Z Phys B Condens Matter 64(2):189–193

    Article  ADS  Google Scholar 

  5. Kamihara Y, Watanabe T, Hirano M, Hosono H (2008) Iron-based layered superconductor La[O1-x F x ]FeAs (x = 0.05 − 0.12) with T c  = 26 K. J Am Chem Soc 130(11):3296–3297

    Article  Google Scholar 

  6. Ashcroft NW, Mermin ND (1976) Solid state physics. Saunders, Philadelphia

    Google Scholar 

  7. Abrikosov AA, Gorkov LP, Dzyaloshinski IE (1975) Methods of quantum field theory in statistical physics. Dover, New York

    Google Scholar 

  8. The fermi surface data base (2009). http://www.phys.ufl.edu/fermisurface/jpg/Cu.jpg

  9. Choy T-S, Naset J, Chen J, Hershfield S, Stanton C (2000) A database of fermi surface in virtual reality modeling language (vrml). Bulletin of the American Physical Society, vol 45, p L36.42

    Google Scholar 

  10. Shoenberg D (1984) Magnetic oscillations in metals. Cambridge University Press, Cambridge

    Google Scholar 

  11. Onsager L (1952) Philos Mag 43:1006

    Google Scholar 

  12. Pippard AB (1965) The dynamics of conduction electrons. Blackie, Glasgow

    Google Scholar 

  13. Kadowaki K, Woods SB (1986) Universal relationship of the resistivity and specific-heat in heavy-Fermion compounds. Solid State Commun 58(8):507–509

    Article  ADS  Google Scholar 

  14. Hussey NE (2005) Non-generality of the Kadowaki–Woods ratio in correlated oxides. J Phys Soc Jpn 74(4):1107–1110

    Article  ADS  Google Scholar 

  15. Landau LD (1960) Theoretical physics in the twentieth century, a memorial volume to Wolfgang Pauli. Interscience, NY, 245 pp

    Google Scholar 

  16. Kohn W, Luttinger JM (1965) New mechanism for superconductivity. Phys Rev Lett 15:524

    Article  MathSciNet  ADS  Google Scholar 

  17. Doiron-Leyraud N, Proust C, LeBoeuf D, Levallois J, Bonnemaison J-B, Liang R, Bonn DA, Hardy WN, Taillefer L (2007) Quantum oscillations and the Fermi surface in an underdoped high-T c superconductor. Nature 447(7144):565–568

    Article  ADS  Google Scholar 

  18. Sebastian SE, Harrison N, Palm E, Murphy TP, Mielke CH, Liang R, Bonn DA, Hardy WN, Lonzarich GG (2008) A multi-component Fermi surface in the vortex state of an underdoped high-T c superconductor. Nature 454(7201):200–203

    Article  ADS  Google Scholar 

  19. Vignolle B, Carrington A, Cooper RA, French MMJ, Mackenzie AP, Jaudet C, Vignolles D, Proust C, Hussey NE (2008) Quantum oscillations in an overdoped high-T c superconductor. Nature 455(7215):952–955

    Article  ADS  Google Scholar 

  20. Tsui DC, Störmer HL, Gossard AC (1982) Two-dimensional magnetotransport in the extreme quantum limit. Phys Rev Lett 48(22):1559–1562

    Article  ADS  Google Scholar 

  21. Stewart GR (2001) Non-Fermi-liquid behavior in d- and f-electron metals. Rev Mod Phys 73(4):797–855

    Article  ADS  Google Scholar 

  22. Löhneysen Hv, Rosch A, Vojta M, Wölfle P (2007) Fermi-liquid instabilities at magnetic quantum phase transitions. Rev Mod Phys 79(3):1015–1075

    Article  ADS  Google Scholar 

  23. Gegenwart P, Si Q, Steglich F (2008) Quantum criticality in heavy-fermion metals. Nat Phys 4(3):186–197

    Article  Google Scholar 

  24. Grigera SA, Mackenzie AP, Schofield AJ, Julian SR, Lonzarich GG (2002) A metamagnetic quantum critical endpoint in Sr3Ru2O7. Int J Modern Phys B 16(20–22):3258–3264 (4th conference on physical phenomena at high magnetic fields, Santa FE, New Mexico, 19–25 October 2001)

    Google Scholar 

  25. Custers J, Gegenwart P, Wilhelm H, Neumaier K, Tokiwa Y, Trovarelli O, Geibel C, Steglich F, Pepin C, Coleman P (2003) The break-up of heavy electrons at a quantum critical point. Nature 424(6948):524–527

    Article  ADS  Google Scholar 

  26. Mathur ND, Grosche FM, Julian SR, Walker IR, Freye DM, Haselwimmer RKW, Lonzarich GG (1998) Magnetically mediated superconductivity in heavy Fermion compounds. Nature 394(6688):39–43

    Article  ADS  Google Scholar 

  27. Hertz JA (1976) Quantum critical phenomena. Phys Rev B 14(3):1165–1184

    Article  ADS  Google Scholar 

  28. Millis AJ (1993) Effect of a nonzero temperature on quantum critical-points in itinerant Fermion systems. Phys Rev B 48(10):7183–7196

    Article  ADS  Google Scholar 

  29. Maeno Y, Hashimoto H, Yoshida K, Nishizaki S, Fujita T, Bednorz JG, Lichtenberg F (1994) Superconductivity in a layered perovskite without copper. Nature 372(6506):532–534

    Article  ADS  Google Scholar 

  30. Rice TM, Sigrist M (1995) Sr2RuO4 - an electronic analog of 3He. J Phys Condens Matter 7(47):L643–L648

    Article  ADS  Google Scholar 

  31. Mackenzie AP, Maeno Y (2003) The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing. Rev Mod Phys 75(2):657–712

    Article  ADS  Google Scholar 

  32. Ikeda S, Maeno Y, Nakatsuji S, Kosaka M, Uwatoko Y (2000) Ground state in Sr3Ru2O7: Fermi liquid close to a ferromagnetic instability. Phys Rev B 62(10):R6089–R6092

    Article  ADS  Google Scholar 

  33. Vollhardt D (1984) Normal 3He—an almost localized Fermi-liquid. Rev Mod Phys 56(1):99–124

    Article  ADS  Google Scholar 

  34. Grigera SA, Perry RS, Schofield AJ, Chiao M, Julian SR, Lonzarich GG, Ikeda SI, Maeno Y, Millis AJ, Mackenzie AP (2001) Magnetic field-tuned quantum criticality in the metallic ruthenate Sr3Ru2O7. Science 294(5541):329–332

    Article  ADS  Google Scholar 

  35. Grigera SA, Gegenwart P, Borzi RA, Weickert F, Schofield AJ, Perry RS, Tayama T, Sakakibara T, Maeno Y, Green AG, Mackenzie AP (2004) Disorder-sensitive phase formation linked to metamagnetic quantum criticality. Science 306(5699):1154–1157

    Article  ADS  Google Scholar 

  36. Borzi RA, Grigera SA, Farrell J, Perry RS, Lister SJS, Lee SL, Tennant DA, Maeno Y, Mackenzie AP (2007) Formation of a nematic fluid at high fields in Sr3Ru2O7. Science 315(5809):214–217

    Article  ADS  Google Scholar 

  37. Mercure J-F (2008) The de Haas–van Alphen effect near a quantum critical end point in Sr3Ru2O7. PhD Thesis, September 2008

    Google Scholar 

  38. Chmaissem O, Jorgensen JD, Shaked H, Ikeda S, Maeno Y (1998) Thermal expansion and compressibility of Sr2RuO4. Phys Rev B 57(9):5067–5070

    Article  ADS  Google Scholar 

  39. Huang Q, Lynn JW, Erwin RW, Jarupatrakorn J, Cava RJ (1998) Oxygen displacements and search for magnetic order in Sr3Ru2O7. Phys Rev B 58(13):8515–8521

    Article  ADS  Google Scholar 

  40. Kiyanagi R, Tsuda K, Aso N, Kimura H, Noda Y, Yoshida Y, Ikeda S-I, Uwatoko Y (2004) Investigation of the structure of single crystal Sr3Ru2O7 by neutron and convergent beam electron diffractions. J Phys Soc Jpn 73(3):639–642

    Article  ADS  Google Scholar 

  41. Cao G, McCall S, Crow JE (1997) Observation of itinerant ferromagnetism in layered Sr3Ru2O7 single crystals. Phys Rev B 55(2):R672–R675

    Article  ADS  Google Scholar 

  42. Ikeda SI, Maeno Y (1999) Magnetic properties of bilayered Sr3Ru2O7. Phys B 261:947–948 (international conference on strongly correlated electron systems (SCES 98), Paris, France, 15–18 July 1998)

    Google Scholar 

  43. Perry RS, Maeno Y (2004) Systematic approach to the growth of high-quality single crystals of Sr3Ru2O7. J Cryst Growth 271(1–2):134–141

    Article  ADS  Google Scholar 

  44. Perry RS, Galvin LM, Grigera SA, Capogna L, Schofield AJ, Mackenzie AP, Chiao M, Julian SR, Ikeda SI, Nakatsuji S, Maeno Y, Pfleiderer C (2001) Metamagnetism and critical fluctuations in high quality single crystals of the bilayer ruthenate Sr3Ru2O7. Phys Rev Lett 86(12):2661–2664

    Article  ADS  Google Scholar 

  45. Stryjewski E, Giordano N (1977) Metamagnetism. Adv Phys 26:487

    Article  ADS  Google Scholar 

  46. Grigera SA, Borzi RA, Mackenzie AP, Julian SR, Perry RS, Maeno Y (2003) Angular dependence of the magnetic susceptibility in the itinerant metamagnet Sr3Ru2O7. Phys Rev B 67(21):214427

    Article  ADS  Google Scholar 

  47. Millis AJ, Schofield AJ, Lonzarich GG, Grigera SA (2010) Metamagnetic quantum criticality in metals. Phys Rev Lett 88(21):217204

    Article  ADS  Google Scholar 

  48. Zhu LJ, Garst M, Rosch A, Si QM (2003) Universally diverging Grüneisen parameter and the magnetocaloric effect close to quantum critical points. Phys Rev Lett 91(6)

    Google Scholar 

  49. Berridge AM, Green AG, Grigera SA, Simons BD (2008) Inhomogeneous magnetic phases: a LOFF-like phase in Sr3Ru2O7. Phys Rev Lett (accepted). arXiv:0810.2096v1

    Google Scholar 

  50. Gegenwart P, Weickert F, Garst M, Perry RS, Maeno Y (2006) Metamagnetic quantum criticality in Sr3Ru2O7 studied by thermal expansion. Phys Rev Lett 96(13):136402

    Article  ADS  Google Scholar 

  51. Nishizaki S, Maeno Y, Mao ZQ (2000) Changes in the superconducting state of Sr2RuO4 under magnetic fields probed by specific heat. J Phys Soc Jpn 69(2):572–578

    Article  ADS  Google Scholar 

  52. Mackenzie AP, Ikeda S, Maeno Y, Fujita T, Julian SR, Lonzarich GG (1998) Fermi surface topography of Sr2RuO4. J Phys Soc Jpn 67(2):385–388

    Article  ADS  Google Scholar 

  53. Bergemann C, Julian SR, Mackenzie AP, NishiZaki S, Maeno Y (2000) Detailed topography of the Fermi surface of Sr2RuO4. Phys Rev Lett 84(12):2662–2665

    Article  ADS  Google Scholar 

  54. Mackenzie AP, Julian SR, Diver AJ, McMullan GJ, Ray MP, Lonzarich GG, Maeno Y, Nishizaki S, Fujita T (1996) Quantum oscillations in the layered perovskite superconductor Sr2RuO4. Phys Rev Lett 76(20):3786–3789

    Article  ADS  Google Scholar 

  55. Bergemann C, Mackenzie AP, Julian SR, Forsythe D, Ohmichi E (2003) Quasi-two-dimensional Fermi liquid properties of the unconventional superconductor Sr2RuO4. Adv Phys 52(7):639–725

    Article  ADS  Google Scholar 

  56. Damascelli A, Lu DH, Shen KM, Armitage NP, Ronning F, Feng DL, Kim C, Shen ZX, Kimura T, Tokura Y, Mao ZQ, Maeno Y (2000) Fermi surface, surface states, and surface reconstruction in Sr2RuO4. Phys Rev Lett 85(24):5194–5197

    Article  ADS  Google Scholar 

  57. Mazin II, Singh DJ (1997) Ferromagnetic spin fluctuation induced superconductivity in Sr2RuO4. Phys Rev Lett 79(4):733–736

    Article  ADS  Google Scholar 

  58. Shen KM, Kikugawa N, Bergemann C, Balicas L, Baumberger F, Meevasana W, Ingle NJC, Maeno Y, Shen Z-X, Mackenzie AP (2007) Evolution of the Fermi surface and quasiparticle renormalization through a van Hove singularity in Sr2-y La y RuO4. Phys Rev Lett 99(18):187001

    Article  ADS  Google Scholar 

  59. Kikugawa N, Mackenzie AP, Bergemann C, Borzi RA, Grigera SA, Maeno Y (2004) Rigid-band shift of the Fermi level in the strongly correlated metal: Sr2-y La y RuO4. Phys Rev B 70(6):060508

    Article  ADS  Google Scholar 

  60. Luttinger JM (1960) Fermi surface and some simple equilibrium properties of a system of interacting Fermions. Phys Rev 119(4):1153–1163

    Article  MATH  MathSciNet  ADS  Google Scholar 

  61. Tamai A, Allan MP, Mercure JF, Meevasana W, Dunkel R, Lu DH, Perry RS, Mackenzie AP, Singh DJ, Shen Z-X, Baumberger F (2008) Fermi surface and van Hove singularities in the itinerant metamagnet Sr3Ru2O7. Phys Rev Lett 101(2):026407

    Article  ADS  Google Scholar 

  62. Perry RS, Kitagawa K, Grigera SA, Borzi RA, Mackenzie AP, Ishida K, Maeno Y (2004) Multiple first-order metamagnetic transitions and quantum oscillations in ultrapure Sr3Ru2O7. Phys Rev Lett 92(16):166602

    Article  ADS  Google Scholar 

  63. Borzi RA, Grigera SA, Perry RS, Kikugawa N, Kitagawa K, Maeno Y, Mackenzie AP (2004) de Haas–van Alphen effect across the metamagnetic transition in Sr3Ru2O7. Phys Rev Lett 92(21):216403

    Article  ADS  Google Scholar 

  64. Damascelli A, Hussain Z, Shen ZX (2003) Angle-resolved photoemission studies of the cuprate superconductors. Rev Mod Phys 75(2):473–541

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas W. Rost .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rost, A.W. (2010). Background Physics. In: Magnetothermal Properties near Quantum Criticality in the Itinerant Metamagnet Sr3Ru2O7 . Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14524-7_2

Download citation

Publish with us

Policies and ethics