Skip to main content

Ubiquitous Bacteriophage Hosts in Rice Paddy Soil

  • Chapter
  • First Online:
Biocommunication in Soil Microorganisms

Part of the book series: Soil Biology ((SOILBIOL,volume 23))

Abstract

Viruses are the most abundant biological entities in rice fields, and bacteriophages comprised the majority among viral communities. Sphingomonas/Novosphingobium phages were exclusively siphoviruses with various host ranges. The high frequency of phage-infected bacterial cells indicated that the bacterial mortality from phage lysis could be significant enough to redirect the microbial food web and change the bacterial communities. There was no significant difference in the frequency of lysogeny between oligotrophs and copiotrophs in soil. Superinfection immunity was not important for bacteria in rice fields, although slower growth from the burden of prophage DNA synthesis was indicated among strains at the genus or species level. The majority of the g23 sequences of T4-type bacteriophages in rice fields were distantly related to those of marine origins. Horizontal gene transfer was suggested by the identical g23 sequences found in distant rice fields. The g23 genes in rice fields have apparently diverged more compared with marine g23 genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann HW (2001) Frequency of morphological phage descriptions in the year 2000. Arch Virol 146:843–857

    Article  CAS  PubMed  Google Scholar 

  • Ackermann HW, DuBow MS (1987) Viruses of prokaryotes, vol. 2. Natural groups of bacteriophages. CRC Press Inc, Boca Raton, FL

    Google Scholar 

  • Agnelli A, Ascher J, Corti G, Ceccherini MT, Nannipieri P, Pietramellara G (2004) Distribution of microbial communities in a forest soil profile investigaged by microbial biomass, soil respiration and DGGE of total and extracellular DNA. Soil Biol Biochem 36:859–868

    Article  CAS  Google Scholar 

  • Binder B (1999) Reconsidering the relationship between virally induced bacterial mortality and frequency of infected cells. Aquat Microb Ecol 18:207–215

    Article  Google Scholar 

  • Børsheim KY (1993) Native marine bacteriophages. FEMS Microbiol Ecol 102:141–159

    Article  Google Scholar 

  • Desplats C, Krisch HM (2003) The diversity and evolution of the T4-type bacteriophages. Res Microbiol 154:259–267

    Article  CAS  PubMed  Google Scholar 

  • Dillon A, Parry JD (2008) Characterization of temperate cyanophages active against freshwater phycocyanin-rich Synechococcus species. Freshwater Biol 53:1253–1261

    Article  Google Scholar 

  • Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball KA (eds) (2005) Virus taxonomy: eighth report of the international committee on taxonomy of viruses. Elsevier Academic Press, London

    Google Scholar 

  • Fierer N, Schimel JP, Holden PA (2003) Variations in microbial community composition through two soil depth profiles. Soil Biol Biochem 35:167–176

    Article  CAS  Google Scholar 

  • Filée J, Tétart F, Suttle CA, Krisch HM (2005) Marine T4-type bacteriophages, a ubiquitous component of the dark matter of the biosphere. Proc Natl Acad Sci USA 102:12471–12476

    Article  PubMed  Google Scholar 

  • Fischer U, Velimirov B (2002) High control of bacterial production by viruses in a eutrophic oxbow lake. Aquat Microb Ecol 27:1–12

    Article  Google Scholar 

  • Fokine A, Leiman PG, Shneider MM, Ahvazi B, Boeshans KM, Steven AC, Black LW, Mesyanzhinov VV, Rossmann MG (2005) Structural and functional similarities between the capsid proteins of bacteriophages T4 and HK97 point to a common ancestry. Proc Natl Acad Sci USA 102:7163–7168

    Article  CAS  PubMed  Google Scholar 

  • Frost LS, Leplae R, Summers AO, Toussaint A (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3:722–732

    Article  CAS  PubMed  Google Scholar 

  • Fuhrman JA (1999) Marine viruses and their biogeochemical and ecological effects. Nature 399:541–548

    Article  CAS  PubMed  Google Scholar 

  • Fujii T, Nakayama N, Nishida M, Sekiya H, Kato N, Asakawa S, Kimura M (2008) Novel capsid genes (g23) of T4-type bacteriophages in a Japanese paddy field. Soil Biol Biochem 40:1049–1058

    Article  CAS  Google Scholar 

  • Gorlach K, Shingaki R, Morisaki H, Hattori T (1994) Construction of eco-collection of paddy field soil bacteria for population analysis. J Gen Appl Microbiol 40:509–517

    Article  CAS  Google Scholar 

  • Jenkins CA, Hayes PK (2006) Diversity of cyanophages infecting the heterocystous filamentous cyanobacterium Nodularia isolated from the brackish Baltic Sea. J Mar Biol Ass UK 86:529–536

    Article  CAS  Google Scholar 

  • Jia Z, Ishihara R, Nakajima Y, Asakawa S, Kimura M (2007) Molecular characterization of T4-type bacteriophages in a rice field. Environ Microbiol 9:1091–1096

    Article  CAS  PubMed  Google Scholar 

  • Jiang SC, Paul JH (1994) Seasonal and diel abundance of viruses and occurrence of lysogeny/bacteriocinogeny in the marine environment. Mar Ecol Prog Ser 104:163–172

    Article  Google Scholar 

  • Kimura M, Jia Z, Nakayama N, Asakawa S (2008) Ecology of viruses in soils: past, present, and future perspectives. Soil Sci Plant Nutr 53:1–32

    Article  Google Scholar 

  • Mann NH (2003) Phages of the marine cyanobacterial picophytoplankton. FEMS Microbiol Rev 27:17–34

    Article  CAS  PubMed  Google Scholar 

  • Mann NH (2005) The third age of phage. PLoS Biol 3:753–755

    Article  CAS  Google Scholar 

  • Marsh P, Wellington EMH (1994) Phage–host interactions in soil. FEMS Microbiol Ecol 15:99–108

    Article  CAS  Google Scholar 

  • Nakayama N, Asakawa S, Kimura M (2009a) Comparison of g23 gene sequence diversity between Novosphingobium and Sphingomonas phages and phage communities in the floodwater of a Japanese paddy field. Soil Biol Biochem 41:179–185

    Article  CAS  Google Scholar 

  • Nakayama N, Asakawa S, Kimura M (2009b) Frequency of phage-infected bacterial cells in the floodwater of a Japanese paddy field. Soil Biol Biochem 41:186–191

    Article  CAS  Google Scholar 

  • Nakayama N, Okabe A, Toyota K, Kimura M, Asakawa S (2006) Phylogenetic distribution of bacteria isolated from the floodwater of a Japanese paddy field. Soil Sci Plant Nutr 52:305–312

    Article  CAS  Google Scholar 

  • Nakayama N, Okumura M, Inoue K, Asakawa S, Kimura M (2007a) Seasonal variations in abundances of virus-like particles and bacteria in the floodwater of a Japanese paddy field. Soil Sci Plant Nutr 53:420–429

    Article  Google Scholar 

  • Nakayama N, Okumura M, Inoue K, Asakawa S, Kimura M (2007b) Abundance of bacteriophages of common heterotrophic bacteria in the floodwater of a Japanese paddy field. Soil Sci Plant Nutr 53:595–605

    Article  CAS  Google Scholar 

  • Nakayama N, Okumura M, Inoue K, Asakawa S, Kimura M (2007c) Morphological analysis of viral communities in the floodwater of a Japanese paddy field. Soil Biol Biochem 39:3187–3190

    Article  CAS  Google Scholar 

  • Nakayama N, Tsuge T, Asakawa S, Kimura M (2009c) Morphology, host range and phylogenetic diversity of Sphingomonas phages in the floodwater of a Japanese paddy field. Soil Sci Plant Nutr 55:53–64

    Article  CAS  Google Scholar 

  • Paul JH, Sullivan MS (2005) Marine phage genomics: what have we learned? Curr Opin Biotech 16:299–307

    Article  CAS  PubMed  Google Scholar 

  • Proctor LM, Okubo A, Furhman JA (1993) Calibrating estimates of phage-induced mortality in marine bacteria: ultrastructural studies of marine bacteriophage development from one-step growth experiments. Microb Ecol 25:161–182

    Article  Google Scholar 

  • Short CM, Suttle CA (2005) Nearly identical bacteriophage structural gene sequences are widely distributed in both marine and freshwater environments. Appl Environ Microbiol 71:480–486

    Article  CAS  PubMed  Google Scholar 

  • Tétart F, Desplats C, Kutateladze M, Monod C, Ackermann HW, Krisch HM (2001) Phylogeny of the major head and tail genes of the wide-ranging T4-type bacteriophages. J Bacteriol 183:358–366

    Article  PubMed  Google Scholar 

  • Van Etten JL, Lane KC, Meints RH (1991) Viruses and viruslike particles of eukaryotic algae. Microbiol Rev 55:586–620

    PubMed  Google Scholar 

  • Wang G, Hayashi M, Saito M, Tsuchiya K, Asakawa S, Kimura M (2009a) Survey of major capsid genes (g23) of T4-type bacteriophages in Japanese paddy field soils. Soil Biol Biochem 41:13–20

    Article  CAS  Google Scholar 

  • Wang G, Jin J, Asakawa S, Kimura M (2009b) Survey of major capsid genes (g23) of T4-type bacteriophages in rice fields in Northeast China. Soil Biol Biochem 41:423–427

    Article  CAS  Google Scholar 

  • Wang G, Murase J, Taki K, Ohashi Y, Yoshikawa N, Asakawa S, Kimura M (2009c) Changes in major capsid genes (g23) of T4-type bacteriophages with soil depth in two Japanese rice fields. Biol Fertil Soils 45:521–529

    Article  CAS  Google Scholar 

  • Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28:127–181

    Article  CAS  PubMed  Google Scholar 

  • Weinbauer MG, Brettar I, Hofle M (2003) Lysogeny and virus-induced mortality of bacterioplankton in surface, deep, and anoxic waters. Limnol Oceanogr 48:1457–1465

    Article  Google Scholar 

  • Weinbauer MG, Rassoulzadegan F (2004) Are viruses driving microbial diversification and diversity? Environ Microbiol 6:1–11

    Article  PubMed  Google Scholar 

  • Weinbauer MG, Suttle CA (1996) Potential significance of lysogeny to bacteriophage production and bacterial mortality in coastal waters of the Gulf of Mexico. Appl Environ Microbiol 62:4374–4380

    CAS  PubMed  Google Scholar 

  • Williamson KE, Radosevich M, Smith DW, Wommack KE (2007) Incidence of lysogeny within temperate and extreme soil environments. Environ Microbiol 9:2563–2574

    Article  CAS  PubMed  Google Scholar 

  • Wommack KE, Colwell RR (2000) Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev 64:69–114

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Kimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kimura, M., Wang, G., Nakayama, N., Asakawa, S. (2011). Ubiquitous Bacteriophage Hosts in Rice Paddy Soil. In: Witzany, G. (eds) Biocommunication in Soil Microorganisms. Soil Biology, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14512-4_7

Download citation

Publish with us

Policies and ethics