Skip to main content

Back to the Soil: Retroviruses and Transposons

  • Chapter
  • First Online:
Biocommunication in Soil Microorganisms

Part of the book series: Soil Biology ((SOILBIOL,volume 23))

Abstract

Transposable elements (TEs) have exerted an impact on genome evolution that is at once substantial and fundamental. They have promoted phenotypic diversity because of their potential for effecting genetic alteration in a great variety of settings and with significant magnitude. Both ancient and omnipresent, TEs can benefit lineages while simultaneously proving detrimental to some individuals. Transposable elements play reformatting, building, and sculpting roles as they effect changes in the genome through both direct and indirect means. Thus, their impact on soil microbes can be substantial. As short DNA sequences, TEs possess the capability to migrate between diverse sites within the genome, a capacity that enables them to promote genomic mutations in a number of ways, ranging from the most limited regulatory mutations to the most extensive rearrangements of the genome. Scientists who pioneered the original discovery of TEs announced their potential roles in genomic adaptation, which was sharply contested by other theorists. Such was the misunderstanding of the beneficial roles of TEs that for over two decades they were regarded almost exclusively in a negative light as genome-damaging intragenomic parasites. A major watershed in TE research came when the Drosophila melanogaster genome was sequenced, which unleashed unprecedented analysis of TEs. This path breaking investigation resulted in the initial identification of TE-produced adaptations in Drosophila melanogaster. Subsequent studies illuminated the fundamental contributions of TEs in the processes of adaptive evolution. This important inference was the product of a methodical search of the entire genome that focused on adaptive insertions that resulted from TEs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agudelo-Romero P, Carbonell P, Perez-Amador MA, Elena SF (2008) Virus adaptation by manipulation of host’s gene expression. PLoS ONE 3:e2397

    Article  PubMed  Google Scholar 

  • Allavena P, Chieppa M, Monti P, Piemonti L (2004) From pattern recognition receptor to regulator of homeostasis: the double-faced macrophage mannose receptor. Crit Rev Immunol 24(3):179–192

    Article  PubMed  CAS  Google Scholar 

  • Amemiya CT, Saha NR, Zapata A (2007) Evolution and development of immunological structures in the Lamprey. Curr Opin Immunol 19(5):535–541

    Article  PubMed  CAS  Google Scholar 

  • Arnaud F, Caporale M, Varela M, Biek R, Chessa B, Alberti A, Golder M, Mura M, Zhang YP, Yu L, Pereira F, Demartini JC, Leymaster K, Spencer TE, Palmarini M (2007) A paradigm for virus-host coevolution: sequential counter-adaptations between endogenous and exogenous retroviruses. PLoS Pathog 3:e170

    Article  PubMed  Google Scholar 

  • Bagasra O (2008) Role of mutually homologous microRNAs in HIV-1 inhibition. 33rd FEBS Congress & 11th IUBMB Conference, Athens, Greece, PP5A-1

    Google Scholar 

  • Bagasra O (2006) A unified concept of HIV-1 latency. Expert Opin Biol Ther 6:1135–1149

    Article  PubMed  CAS  Google Scholar 

  • Bagasra O (2005) RNAi as an anti-viral therapy. Expert Opin Biol Ther 5(11):1463–1474

    Article  PubMed  CAS  Google Scholar 

  • Bagasra O (1999) HIV and molecular immunity: prospect for AIDS vaccine. Eaton publishing, Natick, MA, USA

    Google Scholar 

  • Bagasra O, Pace G (2010) A new perspective on HIV vaccine design: a view point. Ibnosina J Med and Biomed Sci 2(1):1–13

    Google Scholar 

  • Bagasra O, Amjad M (2000) Protection against retroviruses is owing to a different form of immunity: a RNA-based molecular immunity hypothesis. Appl Immunohistochem Mol Morphol 8:133–146

    Article  PubMed  CAS  Google Scholar 

  • Bagasra O, Amjad M (1997) Natural immunity against HIV-1: prospect for AIDS vaccine. Front Biosci 2:387–402

    Google Scholar 

  • Bagasra O, Stir AE, Pirisi-Creek L, Creek KE, Bagasra AU, Glenn N, Lee JS (2006) Role of Micro-RNAs in regulation of lentiviral latency and persistence. Appl Immunohistochem Mol Morphol 14:276–290

    Article  PubMed  CAS  Google Scholar 

  • Bai Y, Casola C, Betrán E (2008) Evolutionary origin of regulatory regions of retrogenes in Drosophila. BMC Genomics 9:240–250

    Article  Google Scholar 

  • Banfield JF, Young M (2009) Microbiology. Variety – the splice of life – in microbial communities. Science 326:1198–1199

    Article  PubMed  CAS  Google Scholar 

  • Bartosik D, Sochacka M, Baj J (2003) Identification and characterization of transposable elements of Paracoccus pantotrophus. J Bacteriol 185(13):3753–3763

    Article  PubMed  CAS  Google Scholar 

  • Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, Dickman MJ, Makarova KS, Koonin EV, van der Oost J (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321(5891):922–923

    Article  Google Scholar 

  • Buchon N, Vaury C (2006) RNAi: a defensive RNA-silencing against viruses and transposable elements. Heredity 96(2):195–202

    Article  PubMed  CAS  Google Scholar 

  • Burnet FM (1959) The clonal selection theory of acquired immunity. Vanderbilt University Press, TN

    Google Scholar 

  • Caswell JL, Mallick S, Richter DJ, Neubauer J, Schirmer C, Gnerre S, Reich D (2008) Analysis of chimpanzee history based on genome sequence alignments. PLoS Genetics 4:e10000057

    Article  Google Scholar 

  • Conley AB, Piriyapongsa J, Jordan IK (2008a) Retroviral promoters in the human genome. Bioinformatics 24:1563–1567

    Article  PubMed  CAS  Google Scholar 

  • Conley AB, Miller WJ, Jordan IK (2008b) Human cis natural antisense transcripts initiated by transposable elements. Trends Genet 24:53–56

    Article  PubMed  CAS  Google Scholar 

  • de Kruif P (1926) Microbe hunters. Harcourt, Brace and Company, New York

    Google Scholar 

  • Doolittle RF, Sapienza C (1980) Selfish genes, the phenotypic paradigm, and genome evolution. Nature 284:601–603

    Article  PubMed  CAS  Google Scholar 

  • Dooner HK, Weil CF (2007) Give-and-take: interactions between DNA transposons and their host plant genomes. Curr Opin Genet Dev 17:486–492

    Article  PubMed  CAS  Google Scholar 

  • Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, Sørensen MV, Haddock SH, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale MQ, Giribet G (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749

    Article  PubMed  CAS  Google Scholar 

  • Frenkel N, Schirmer EC, Wyatt LS, Katsafanas G, Roffman E, Danovich RM, June CH (1990) Isolation of a new herpesvirus from human CD4+ T cells. Proc Natl Acad Sci USA 87:748–752

    Article  PubMed  CAS  Google Scholar 

  • Furesz J, Levenbook I (1998) New assays for the quality control of live oral poliovirus vaccine. Acta Microbiol Immunol Hung 45(3–4):391–399

    PubMed  CAS  Google Scholar 

  • Hakim ST, Alsayari M, McLean DC, Saleem S, Addanki KC, Aggarwal M, Mahalingam K, Bagasra O (2008) A large number of the human microRNAs target lentiviruses, retroviruses, and endogenous retroviruses. BBRC 369:357–362

    PubMed  CAS  Google Scholar 

  • Han CG, Shiga Y, Tobe T, Sasakawa C, Ohtsubo E (2001) Structural and functional characterization of IS679 and IS66-family elements. J Bacteriol 183:4296–4304

    Article  PubMed  CAS  Google Scholar 

  • Harris J (2009) Soil microbial communities and restoration ecology: facilitators or followers? Science 325:573–574

    Article  PubMed  CAS  Google Scholar 

  • Helm T (2004) Basic immunology: a primer. Minn Med 87(5):40–44

    PubMed  Google Scholar 

  • Heimberg AM, Sempere LF, Moy VN, Donoghue PC, Peterson KJ (2008) MicroRNAs and the advent of vertebrate morphological complexity. Proc Natl Acad Sci USA 105:2946–2950

    Article  PubMed  CAS  Google Scholar 

  • Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327(5962):167–170

    Article  PubMed  CAS  Google Scholar 

  • Jordan IK, Rogozin IB, Wolf YI, Koonin EV (2002) Microevolutionary genomics of bacteria. Theor Popul Biol 61(4):435–447

    Article  PubMed  Google Scholar 

  • Jordan IK, Rogozin IB, Glazko GV, Koonin EV (2003) Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet 19(2):68–72

    Article  PubMed  CAS  Google Scholar 

  • Karp CL, Auwaerter PG (2007) Coinfection with HIV and tropical infectious diseases. II. Helminthic, fungal, bacterial and viral pathogens. Clin Infect Dis 45:1214–1220

    Article  PubMed  Google Scholar 

  • Karttunen A, Pöyry T, Vaarala O, Ilonen J, Hovi T, Roivainen M, Hyypiä T (2003) Variation in enterovirus receptor genes. J Med Virol 70(1):99–108

    Article  PubMed  CAS  Google Scholar 

  • Kidwell MG, Lisch DR (2001) Perspective: transposable elements, parasitic DNA, genome evolution. Evolution 55:1–24

    PubMed  CAS  Google Scholar 

  • Lisch D (2002) Mutator transposons. Trends Plant Sci 7:498–504

    Article  PubMed  CAS  Google Scholar 

  • Lisco A, Grivel JC, Biancotto A, Vanpouille C, Origgi F, Malnati MS, Schols D, Lusso P, Margolis LB (2007) Viral interactions in human lymphoid tissue: human herpesvirus 7 suppresses the replication of CCR5-tropic human immunodeficiency virus type 1 via CD4 modulation. J Virol 81:708–717

    Article  PubMed  CAS  Google Scholar 

  • Lusso P, Secchiero P, Crowley RW, Garzino-Demo A, Berneman ZN, Gallo RC (1994) CD4 is a critical component of the receptor for human herpesvirus 7: Interference with human immunodeficiency virus. Proc Natl Acad Sci USA 91:3872–3876

    Article  PubMed  CAS  Google Scholar 

  • Matzke MA, Mette MF, Matzke AJ (2000) Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates. Plant Mol Biol 43:401–415

    Article  PubMed  CAS  Google Scholar 

  • Muotri AR, Marchetto MC, Coufal NG, Gage FH (2007) The necessary junk: new functions for transposable elements. Hum Mol Genet 16(Review Issue 2):R159–R167

    Article  PubMed  CAS  Google Scholar 

  • Navon R, Wang H, Steinfeld I, Tsalenko A, Ben-Dor A, Yakhini Z (2009) Novel rank-based statistical methods reveal microRNAs with differential expression in multiple cancer types. PLoS One 4(11):e8003

    Article  PubMed  Google Scholar 

  • Obbard DJ, Gordon KH, Buck AH, Jiggins FM (2009) The evolution of RNAi as a defence against viruses and transposable elements. Philos Trans R Soc Lond B Biol Sci 364:99–115

    Article  PubMed  CAS  Google Scholar 

  • Ochman H, Raghavan R (2009) Systems biology. Excavating the functional landscape of bacterial cells. Science 326:1200–1201

    Article  PubMed  CAS  Google Scholar 

  • Palm NW, Medzhitov R (2009) Pattern recognition receptors and control of adaptive immunity. Immunol Rev 227(1):221–233

    Article  PubMed  CAS  Google Scholar 

  • Pandrea I, Sodora DL, Silvestri G, Apetrei C (2008) Into the wild: simian immunodeficiency virus (SIV) infection in natural hosts. Trends Immunol 29:419–428

    Article  PubMed  CAS  Google Scholar 

  • Piriyapongsa J, Jordan IK (2008) Dual coding of siRNAs and miRNAs by plant transposable elements. RNA 14:814–821

    Article  PubMed  CAS  Google Scholar 

  • Pradeu T (2009) Immune system: “Big Bang” in question. Science 325(5939):393

    Article  PubMed  CAS  Google Scholar 

  • Ryt-Hansen R, Katzenstein TL, Gerstoft J, Eugen-Olsen J (2006) No influence of GB virus C on disease progression in a Danish cohort of HIV-infected men. AIDS Res Hum Retroviruses 22:496–498

    Article  PubMed  Google Scholar 

  • Schluter SF, Marchalonis JJ (2003) Cloning of shark RAG2 and characterization of the RAG1/RAG2 gene locus. FASEB J 17:470–472

    PubMed  CAS  Google Scholar 

  • Schott DH, Cureton DK, Whelan SP, Hunter CP (2005) An antiviral role for the RNA interference machinery in Caenorhabditis elegans. Proc Natl Acad Sci USA 102:18420–18424

    Article  PubMed  CAS  Google Scholar 

  • Schmeier S, MacPherson CR, Essack M, Kaur M, Schaefer U, Suzuki H, Hayashizaki Y, Bajic VB (2009) Deciphering the transcriptional circuitry of microRNA genes expressed during human monocytic differentiation. BMC Genomics 10:595

    Article  PubMed  Google Scholar 

  • Schramke V, Allshire R (2003) Hairpin RNAs and retrotransposon LTRs effect RNAi and chromatin-based gene silencing. Science 301:1069–1074

    Article  PubMed  CAS  Google Scholar 

  • Shabalina SA, Koonin EV (2008) Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol 23(10):578–587

    Article  PubMed  Google Scholar 

  • Siomi MC, Siomi H (2008) Characterization of endogenous human Argonautes and their miRNA partners in RNA silencing. Nucleic Acids Symp Ser (Oxf) 52:59–60

    Article  CAS  Google Scholar 

  • Sompayrac LM (2008) How the immune system works, 3rd edn. Wiley-Blackwel, Malden, MA

    Google Scholar 

  • Szathmáry E (1999) The origin of the genetic code: amino acids as cofactors in an RNA world. Trends Genet 15:223–229

    Article  PubMed  Google Scholar 

  • Taganov KD, Boldin MP, Baltimore D (2007) MicroRNAs and immunity: tiny players in a big field. Immunity 26:133–137

    Article  PubMed  CAS  Google Scholar 

  • Tang TH, Polacek N, Zywicki M, Huber H, Brugger K, Garrett R, Bachellerie JP, Hüttenhofer A (2005) Identification of novel non-coding RNAs as potential antisense regulators in the archaeon Sulfolobus solfataricus. Mol Microbiol 55(2):469–481

    Article  PubMed  CAS  Google Scholar 

  • Thompson CB (1995) New insights into V(D)J recombination and its role in the evolution of the immune system. Immunity 3(5):531–539

    Article  PubMed  CAS  Google Scholar 

  • Ulenga NK, Sarr AD, Hamel D, Sankale JL, Mboup S, Kanki PJ (2008) The level of APOBEC3G (hA3G)-related G-to-A mutations does not correlate with viral load in HIV type 1-infected individuals. AIDS Res Human Ret 24:1285–1290

    Article  CAS  Google Scholar 

  • Walker BD, Goulder PJ (2000) AIDS. Escape from the immune system. Nature 407:313–314

    Article  PubMed  CAS  Google Scholar 

  • Zamore PD (2006) RNA interference: big applause for silencing in Stockholm. Cell 127:1083–1086

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We would like to thank Robert T. Pace for his art work for Figure 1. This work was partially supported by a grant from the US Department of Energy (grant #DE-EM0000479).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Bagasra .

Editor information

Editors and Affiliations

Appendix

Appendix

Abbreviation

Term

Meaning

Ago

Argonaute protein

The catalytic core of RISC that binds short RNAs and, in many cases, displays RNase H-like mRNA-cleaving activity. Key domains include the PAZ (Piwi-Argonaute-Zwille) and Piwi domains. Ago is named after an Arabidopsis developmental mutant that resembles the tentacles of a paper nautilus (Argonautidae)

Dcr

Dicer protein

The RNase-III family ribonuclease that cleaves dsRNA into short RNAs. Key domains include a helicase C-terminal domain, dsRNA-binding domains, a PAZ domain and two RNase-III domains. Named for its “dicing” activity

dsRNA

Double-stranded RNA

Small double-stranded RNAs are the basic molecules involved in gene silencing, gene regulation and viral defense

endo-siRNA

Endogenous siRNA

A short RNA (other than an miRNA) that is derived from the host genome, rather than an exogenous source (e.g. a virus)

IS

Insertional sequences

The most basic of transposable element forms, which are part of practically every bacterial genome, are the insertion sequences

miRNA

microRNA

Single-stranded RNAs of 21–22 nt, derived from short fold-back hairpins (pre-miRNAs) and involved in translational control

piRNA

Piwi-interacting RNA

Single-stranded RNAs of 24–29 nt that function in complex with Piwi family Argonaute proteins in the animal germ line

rasiRNA

Repeat-associated siRNA

Short RNAs derived from repeat sequences, such as TEs, sometimes considered a subclass of piRNAs in Drosophila

RdRp

RNA-dependent RNA polymerase

RNA polymerase directed by RNA, especially eukaryotic polymerases involved in the amplification of RNAi in nematodes and plants

RISC

RNA-induced silencing complex

The complex comprising Argonaute, a short RNA, and several other proteins, which mediates RNAi through sequence-specific complementarity

RNAi

RNA interference

The class of processes that use short single-stranded RNA molecules in complex with an Argonaute protein to bind complementary nucleic acids and modify their action and/or processing

siRNA

Short interfering RNA

Single-stranded RNAs of 20–30 nt involved in RNAi (especially those not classed as microRNAs)

ncRNA

Small noncoding RNA

Small noncoding RNAs play a crucial role in molecular immunity based on sequence homology

SRNA

Small nucleolar-like RNA

The pre-RNA that are several hundred to thousand or so bp long and contain hairpin structure. These molecules are cut into smaller size and exported to cytoplasm by Exportin-5. Subsequently they take the shape of siRNA

TE

Transposable element

A stretch of DNA capable of moving around the genome, either by excision (cut-and-paste transposons) or through an RNA intermediate (retro-elements)

UTR

Untranslated region

Nonprotein-coding regions at the 5′ and 3′ ends of an mRNA

viRNA

Viral RNA

siRNAs derived from viral sequences

VSR

Viral suppressor of RNAi

Any viral gene that inhibits host RNAi function

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bagasra, O., Pace, D.G. (2011). Back to the Soil: Retroviruses and Transposons. In: Witzany, G. (eds) Biocommunication in Soil Microorganisms. Soil Biology, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14512-4_6

Download citation

Publish with us

Policies and ethics