Skip to main content

Identification and Analysis of Prophages and Phage Remnants in Soil Bacteria

  • Chapter
  • First Online:
Book cover Biocommunication in Soil Microorganisms

Part of the book series: Soil Biology ((SOILBIOL,volume 23))

Abstract

Soils serve as a shelter for wide range of bacteria and virus monotypes, which include tailed, spherical, and filamentous particle. The existence of temperate phages, i.e., prophages, and their significance in soil hosts is not well understood. Whole genome sequence data and outcome of prophage detection methods in bacterial genomes indicate that prophage sequences pervade prokaryotic genomes. Lysogenic state is considered as mutual coexistence of host bacteria and prophage which improves host fitness leading to phage-mediated horizontal gene transfer and also favors the prophage genome to be a permanent associate of the host. Using the database of cryptic prophage elements and phage remnants available at http://bicmku.in:8082, we focus on the methods for systematic and definitive identification of prophages in a collection of soil bacteria and the importance of phage-mediated gene transfer in the evolution of prokaryotes. A total of 200 bacterial genomes with no prophage reports were taken up for the study. Employing a proteome comparison method using protein similarity approach (PSA) yielded 30 prophage-like elements. By the genome comparison method using dinucleotides relative abundance difference (DRAD), 52 prophage elements were identified. Comparative analysis of other available methods against the above approaches developed here will be discussed. Detailed analysis of locus will help in understanding the contribution of prophages to the microbial communities in soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abebe HM, Sadowsky MJ, Kinkle BK, Schmidt EL (1992) Lysogeny in Bradyrhizobium japonicum and its effect on soybean nodulation. Appl Environ Microbiol 58:3360–3366

    PubMed  CAS  Google Scholar 

  • Appunu C, Dhar B (2008) Isolation and symbiotic characteristics of two Tn5-derived phage-resistant Bradyrhizobium japonicum strains that nodulate soybean. Curr Microbiol 57:212–217

    Article  PubMed  CAS  Google Scholar 

  • Arber W (1991) Elements in microbial evolution. J Mol Evol 33:4–12

    Article  PubMed  CAS  Google Scholar 

  • Ashelford KE, Day MJ, Fry JC (2003) Elevated abundance of bacteriophage infecting bacteria in soil. Appl Environ Microbiol 69:285–289

    Article  PubMed  CAS  Google Scholar 

  • Baba T, Takeuchi F, Kuroda M, Yuzawa H, Aoki K et al (2002) Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 359:1819–1827

    Article  PubMed  CAS  Google Scholar 

  • Banks DJ, Beres SB, Musser JM (2002) The fundamental contribution to GAS evolution, genome diversification and strain emergence. Trends Microbiol 10:515–521

    Article  PubMed  CAS  Google Scholar 

  • Barbe V, Vallenet D, Fonknechten N, Kreimeyer A, Oztas S et al (2004) Unique features revealed by the genome sequence of Acinetobacter sp. ADP1, a versatile and naturally transformation competent bacterium. Nucleic Acids Res 32:5766–5779

    Article  PubMed  CAS  Google Scholar 

  • Blaisdell BE, Campbell AM, Karlin S (1996) Similarities and dissimilarities of phage genomes. Proc Natl Acad Sci USA 93:5854–5859

    Article  PubMed  CAS  Google Scholar 

  • Bourhy P, Frangeul L, Couve E, Glaser P, Saint Girons I et al (2005) Complete nucleotide sequence of the LE1 prophage from the spirochete Leptospira biflexa and characterization of its replication and partition functions. J Bacteriol 187:3931–3940

    Article  PubMed  CAS  Google Scholar 

  • Boyd EF, Brussow H (2002) Common themes among bacteriophage-encoded virulence factors and diversity among the bacteriophages involved. Trends Microbiol 10:521–529

    Article  PubMed  CAS  Google Scholar 

  • Boyd EF, Davis BM, Hochhut B (2001) Bacteriophage-bacteriophage interactions in the evolution of pathogenic bacteria. Trends Microbiol 9:137–144

    Article  PubMed  CAS  Google Scholar 

  • Brussow H (2007) Bacteria between protists and phages: from antipredation strategies to the evolution of pathogenicity. Mol Microbiol 65:583–589

    Article  PubMed  CAS  Google Scholar 

  • Brussow H, Canchaya C, Hardt WD (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68:560–602

    Article  PubMed  Google Scholar 

  • Canchaya C, Fournous G, Brussow H (2004) The impact of prophages on bacterial chromosomes. Mol Microbiol 53:9–18

    Article  PubMed  CAS  Google Scholar 

  • Canchaya C, Proux C, Fournous G, Bruttin A, Brussow H (2003) Prophage genomics. Microbiol Mol Biol Rev 67:238–276, table

    Article  PubMed  CAS  Google Scholar 

  • Casjens S (2003) Prophages and bacterial genomics: what have we learned so far? Mol Microbiol 49:277–300

    Article  PubMed  CAS  Google Scholar 

  • Chitra D, Archana P (2002) Horizontal gene transfer and bacterial diversity. J Biosci 27:27–33

    Article  Google Scholar 

  • Collyn F, Fukushima H, Carnoy C, Simonet M, Vincent P (2005) Linkage of the horizontally acquired ypm and pil genes in Yersinia pseudotuberculosis. Infect Immun 73:2556–2558

    Article  PubMed  CAS  Google Scholar 

  • de Almeida R, Trevilato PB, Bartoleti LA, Proenca-Modena JL, Hanna ES et al (2004) Bacteriophages and insertion sequences of Chromobacterium violaceum ATCC 12472. Genet Mol Res 3:76–84

    PubMed  Google Scholar 

  • DeShazer D (2004) Genomic diversity of Burkholderia pseudomallei clinical isolates: subtractive hybridization reveals a Burkholderia mallei-specific prophage in B. pseudomallei 1026b. J Bacteriol 186:3938–3950

    Article  PubMed  CAS  Google Scholar 

  • Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  PubMed  Google Scholar 

  • Fouts DE (2006) Phage_Finder: automated identification and classification of prophage regions in complete bacterial genome sequences. Nucleic Acids Res 34:5839–5851

    Article  PubMed  CAS  Google Scholar 

  • Frunzke J, Bramkamp M, Schweitzer JE, Bott M (2008) Population heterogeneity in Corynebacterium glutamicum ATCC 13032 caused by prophage CGP3. J Bacteriol 190:5111–5119

    Article  PubMed  CAS  Google Scholar 

  • Fung JM, Morris RM, Adrian L, Zinder SH (2007) Expression of reductive dehalogenase genes in Dehalococcoides ethenogenes strain 195 growing on tetrachloroethene, trichloroethene, or 2, 3-dichlorophenol. Appl Environ Microbiol 73:4439–4445

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Vallve S, Guzman E, Montero MA, Romeu A (2003) HGT-DB: a database of putative horizontally transferred genes in prokaryotic complete genomes. Nucleic Acids Res 31:187–189

    Article  PubMed  CAS  Google Scholar 

  • Ghosh D, Roy K, Williamson KE, White DC, Wommack KE et al (2008) Prevalence of lysogeny among soil bacteria and presence of 16S rRNA and trzN genes in viral-community DNA. Appl Environ Microbiol 74:495–502

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez MD, Lichtensteiger CA, Caughlan R, Vimr ER (2002) Conserved filamentous prophage in Escherichia coli O18:K1:H7 and Yersinia pestis biovar orientalis. J Bacteriol 184:6050–6055

    Article  PubMed  CAS  Google Scholar 

  • Hacker J, Carniel E (2001) Ecological fitness, genomic islands and bacterial pathogenicity. A Darwinian view of the evolution of microbes. EMBO Rep 2:376–381

    PubMed  CAS  Google Scholar 

  • Hsiao W, Wan I, Jones SJ, Brinkman FS (2003) IslandPath: aiding detection of genomic islands in prokaryotes. Bioinformatics 19:418–420

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa J, Yamashita A, Mikami Y, Hoshino Y, Kurita H et al (2004) The complete genomic sequence of Nocardia farcinica IFM 10152. Proc Natl Acad Sci USA 101:14925–14930

    Article  PubMed  CAS  Google Scholar 

  • Johnson DR, Brodie EL, Hubbard AE, Andersen GL, Zinder SH et al (2008) Temporal transcriptomic microarray analysis of “Dehalococcoides ethenogenes” strain 195 during the transition into stationary phase. Appl Environ Microbiol 74:2864–2872

    Article  PubMed  CAS  Google Scholar 

  • Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M et al (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25

    Article  PubMed  CAS  Google Scholar 

  • Karlin S (1998) Global dinucleotide signatures and analysis of genomic heterogeneity. Curr Opin Microbiol 1:598–610

    Article  PubMed  CAS  Google Scholar 

  • Leplae R, Hebrant A, Wodak SJ, Toussaint A (2004) ACLAME: a CLAssification of Mobile genetic Elements. Nucleic Acids Res 32:D45–D49

    Article  PubMed  CAS  Google Scholar 

  • Lima-Mendez G, Van Helden J, Toussaint A, Leplae R (2008) Prophinder: a computational tool for prophage prediction in prokaryotic genomes. Bioinformatics 24:863–865

    Article  PubMed  CAS  Google Scholar 

  • Mantri Y, Williams KP (2004) Islander: a database of integrative islands in prokaryotic genomes, the associated integrases and their DNA site specificities. Nucleic Acids Res 32:D55–D58

    Article  PubMed  CAS  Google Scholar 

  • Mavrodi DV, Loper JE, Paulsen IT, Thomashow LS (2009) Mobile genetic elements in the genome of the beneficial rhizobacterium Pseudomonas fluorescens Pf-5. BMC Microbiol 9:8

    Article  PubMed  Google Scholar 

  • Maymo-Gatell X (2005) Fundamental things apply: the case of Dehalococcoides ethenogenes. Int Microbiol 8:137–140

    PubMed  Google Scholar 

  • Mehta P, Casjens S, Krishnaswamy S (2004) Analysis of the lambdoid prophage element e14 in the E. coli K-12 genome. BMC Microbiol 4:4

    Article  PubMed  Google Scholar 

  • Moreau S, Leret V, Le Marrec C, Varangot H, Ayache M et al (1995) Prophage distribution in coryneform bacteria. Res Microbiol 146:493–505

    Article  PubMed  CAS  Google Scholar 

  • Mural RJ, Friedman DI (1974) Isolation and characterization of a temperate bacteriophage specific for Rhodopseudomonas spheroides. J Virol 14:1288–1292

    PubMed  CAS  Google Scholar 

  • Norton JM, Klotz MG, Stein LY, Arp DJ, Bottomley PJ et al (2008) Complete genome sequence of Nitrosospira multiformis, an ammonia-oxidizing bacterium from the soil environment. Appl Environ Microbiol 74:3559–3572

    Article  PubMed  CAS  Google Scholar 

  • Ou HY, Chen LL, Lonnen J, Chaudhuri RR, Thani AB et al (2006) A novel strategy for the identification of genomic islands by comparative analysis of the contents and contexts of tRNA sites in closely related bacteria. Nucleic Acids Res 34:e3

    Article  PubMed  Google Scholar 

  • Pourcel C, Salvignol G, Vergnaud G (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151:653–663

    Article  PubMed  CAS  Google Scholar 

  • Qin JH, Zhang Q, Zhang ZM, Zhong Y, Yang Y et al (2008) Identification of a novel prophage-like gene cluster actively expressed in both virulent and avirulent strains of Leptospira interrogans serovar Lai. Infect Immun 76:2411–2419

    Article  PubMed  CAS  Google Scholar 

  • Rao GV, Mehta P, Srividhya KV, Krishnaswamy S (2005) A protein similarity approach for detecting prophage regions in bacterial genomes. Genome Biol 6:p11

    Article  Google Scholar 

  • Ravel J, Fraser CM (2005) Genomics at the genus scale. Trends Microbiol 13:95–97

    Article  PubMed  CAS  Google Scholar 

  • Regeard C, Maillard J, Dufraigne C, Deschavanne P, Holliger C (2005) Indications for acquisition of reductive dehalogenase genes through horizontal gene transfer by Dehalococcoides ethenogenes strain 195. Appl Environ Microbiol 71:2955–2961

    Article  PubMed  CAS  Google Scholar 

  • Rohwer F, Edwards R (2002) The phage proteomic tree: a genome-based taxonomy for phage. J Bacteriol 184:4529–4535

    Article  PubMed  CAS  Google Scholar 

  • Schloss PD, Handelsman J (2006) Toward a census of bacteria in soil. PLoS Comput Biol 2:e92

    Article  PubMed  Google Scholar 

  • Seshadri R, Adrian L, Fouts DE, Eisen JA, Phillippy AM et al (2005) Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes. Science 307:105–108

    Article  PubMed  CAS  Google Scholar 

  • Smith MJ, Jeddeloh JA (2005) DNA methylation in lysogens of pathogenic Burkholderia spp. requires prophage induction and is restricted to excised phage DNA. J Bacteriol 187:1196–1200

    Article  PubMed  CAS  Google Scholar 

  • Srividhya KV, Alaguraj V, Poornima G, Kumar D, Singh GP et al (2007) Identification of prophages in bacterial genomes by dinucleotide relative abundance difference. PLoS ONE 2:e1193

    Article  PubMed  CAS  Google Scholar 

  • Srividhya KV, Geeta VR, Raghavenderan L, Preeti M, Jaime P et al (2006) Database and comparative identification of prophages. LNCIS 344:863–868

    Google Scholar 

  • Summer EJ, Gonzalez CF, Bomer M, Carlile T, Embry A et al (2006) Divergence and mosaicism among virulent soil phages of the Burkholderia cepacia complex. J Bacteriol 188:255–268

    Article  PubMed  CAS  Google Scholar 

  • Tinsley CR, Bille E, Nassif X (2006) Bacteriophages and pathogenicity: more than just providing a toxin? Microbes Infect 8:1365–1371

    Article  PubMed  CAS  Google Scholar 

  • Tuanyok A, Leadem BR, Auerbach RK, Beckstrom-Sternberg SM, Beckstrom-Sternberg JS et al (2008) Genomic islands from five strains of Burkholderia pseudomallei. BMC Genomics 9:566

    Article  PubMed  Google Scholar 

  • Verheust C, Jensen G, Mahillon J (2003) pGIL01, a linear tectiviral plasmid prophage originating from Bacillus thuringiensis serovar israelensis. Microbiology 149:2083–2092

    Article  PubMed  CAS  Google Scholar 

  • Wang PW, Chu L, Guttman DS (2004) Complete sequence and evolutionary genomic analysis of the Pseudomonas aeruginosa transposable bacteriophage D3112. J Bacteriol 186:400–410

    Article  PubMed  CAS  Google Scholar 

  • Ward N, Larsen O, Sakwa J, Bruseth L, Khouri H et al (2004) Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath). PLoS Biol 2:e303

    Article  PubMed  Google Scholar 

  • Williamson KE, Radosevich M, Smith DW, Wommack KE (2007) Incidence of lysogeny within temperate and extreme soil environments. Environ Microbiol 9:2563–2574

    Article  PubMed  CAS  Google Scholar 

  • Williamson KE, Radosevich M, Wommack KE (2005) Abundance and diversity of viruses in six Delaware soils. Appl Environ Microbiol 71:3119–3125

    Article  PubMed  CAS  Google Scholar 

  • Williamson KE, Schnitker JB, Radosevich M, Smith DW, Wommack KE (2008) Cultivation-based assessment of lysogeny among soil bacteria. Microb Ecol 56:437–447

    Article  PubMed  Google Scholar 

  • Woods DE, Jeddeloh JA, Fritz DL, DeShazer D (2002) Burkholderia thailandensis E125 harbors a temperate bacteriophage specific for Burkholderia mallei. J Bacteriol 184:4003–4017

    Article  PubMed  CAS  Google Scholar 

  • Yoon SH, Hur CG, Kang HY, Kim YH, Oh TK et al (2005) A computational approach for identifying pathogenicity islands in prokaryotic genomes. BMC Bioinformatics 6:184

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Bioinformatics facilities provided by Department of Biotechnology, Government of India under Centre of Excellence. CSIR and UGC RFSMS for fellowship to KVS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Krishnaswamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Srividhya, K.V., Krishnaswamy, S. (2011). Identification and Analysis of Prophages and Phage Remnants in Soil Bacteria. In: Witzany, G. (eds) Biocommunication in Soil Microorganisms. Soil Biology, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14512-4_5

Download citation

Publish with us

Policies and ethics