Skip to main content

Microbe–Microbe, Microbe–Plant Biocommunication

  • Chapter
  • First Online:
Biocommunication in Soil Microorganisms

Part of the book series: Soil Biology ((SOILBIOL,volume 23))

Abstract

Quorum Sensing (QS) is a natural phenomenon of communication circuits to regulate a diverse array of physiological activities. QS regulates microbial diversity and ecological balance through various process, i.e., symbiosis, motility, sporulation, virulence, biofilm formation, competence, conjugation, and antibiotic production. There are numerous bacteria, fungi, and plants that have components of a QS system to control a specific phenotype of an organism and to shape the microbial community in the rhizophere. Bacterial intercellular communication is based on the detection of diffusible signal molecules and their transduction mechanisms which convert the information into appropriate molecular–cellular responses. Recent advances in studies of QS systems have brought the understanding that biocommunication and community behavior are crucial parameters for the successful interactions in a mycorrhizosphere. We are only at the beginning to understand how plants control microbial communities in the rhizophere. Interspecies and cross-kingdom communication is implicated in successful symbiotic interactions of a variety of bacteria with fungi and plant systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adonizio AL (2008) Anti-quorum sensing agents from South Florida medicinal plants and their attenuation of Pseudomonas Aeruginosa pathogenicity. Electronic Theses and Dissertations, Florida International University

    Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19:3550–3553

    Article  CAS  Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  PubMed  CAS  Google Scholar 

  • Ames BN (1989) Mycorrhiza development in onion in response to chitin-decomposing actinomycetes. New Phytol 112:423–427

    Article  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2003) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  Google Scholar 

  • Baluska F, Volkmann D, Menzel D (2005) Plant synapses: actin-based domains for cell-to-cell communication. Trends Plant Sci 10:106–111

    Article  PubMed  CAS  Google Scholar 

  • Bassler BL, Wright M, Silverman MR (1994) Multiple signaling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway. Mol Microbiol 13:273–286

    Article  PubMed  CAS  Google Scholar 

  • Birla SS, Tiwari VV, Gade A, Ingle AP, Yadav A, Rai MK (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48:173–179

    Article  PubMed  CAS  Google Scholar 

  • Blosser-Middleton RS, Gray KM (2001) Multiple N-acyl homoserine lactone signals of Rhizobium leguminosarum are synthesized in a distinct temporal pattern. J Bacteriol 183:6771–6777

    Article  PubMed  CAS  Google Scholar 

  • Bonfante P, Anca IA (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383

    Article  PubMed  CAS  Google Scholar 

  • Bowen GD, Theodorou C (1979) Interactions between bacteria and ectomycorrhizal fungi. Soil Biol Biochem 11:119–126

    Article  Google Scholar 

  • Brencic A, Winans SC (2005) Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol Mol Biol Rev 69:155–194

    Article  PubMed  CAS  Google Scholar 

  • Brewin NJ, Beringer JE, Buchanan-Wollaston AV, Johnston AWB, Hirsch PR (1980) Transfer of symbiotic genes with bacteriocinogenic plasmids in Rhizobium leguminosarum. J Gen Microbiol 116:261–270

    CAS  Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Article  Google Scholar 

  • Camehl I, Sherameti I, Venus Y, Bethke G, Varma A, Lee J, Oelmüller R (2010) Ethylene signalling and ethylene-targeted transcription factors are required to balance beneficial and nonbeneficial traits in the symbiosis between the endophytic fungus Piriformospora indica and Arabidopsis thaliana. New Phytol 185:1062–1073

    Article  PubMed  CAS  Google Scholar 

  • Cha C, Gao P, Chen YC, Shaw PD, Farrand SK (1998) Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. Mol Plant Microbe Interact 11:1119–1129

    Article  PubMed  CAS  Google Scholar 

  • Chugani SA, Whiteley M, Lee KM, D’Argenio D, Manoil C, Greenberg EP (2001) QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 98:2752–2757

    Article  PubMed  CAS  Google Scholar 

  • Crespi BJ (2001) The evolution of social behaviour in microorganisms. Trends Ecol Evol 16:178–183

    Article  PubMed  Google Scholar 

  • Dameron CT, Reeser RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwaldm ML, Brus LE, Winge DR (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338:596–597

    Article  CAS  Google Scholar 

  • De Kievit TR, Iglewski BH (2000) Bacterial quorum sensing in pathogenic relationships. Infect Immun 68(9):4839–4849

    Article  PubMed  Google Scholar 

  • Denison FR, Kiers TE (2004) Why are most rhizobia beneficial to their plants, rather than parasitic? Microbes Infect 6:1235–1239

    Article  PubMed  CAS  Google Scholar 

  • Diggle SP, Winzer K, Lazdunski A, Williams P, Ca’mara M (2002) Advancing the quorum in Pseudomonas aeruginosa: the regulation of N-acylhomoserine lactone production and virulence gene expression. J Bacteriol 184:2576–2586

    Article  PubMed  CAS  Google Scholar 

  • Diggle SP, Crusz SA, Cámara M (2003) Quorum sensing. Curr Biol 17:R908–R910

    Google Scholar 

  • Diggle SP, Gardner A, West SA, Griffin AS (2007) Evolutionary theory of bacterial quorum sensing: when is a signal not a signal? Philos Trans R Soc Lond B Biol Sci 362:1241–1249

    Article  PubMed  CAS  Google Scholar 

  • Dunny GM, Winans SC (1999) Cell–cell signalling in bacteria. ASM Press, Washington, DC, pp 1–5

    Google Scholar 

  • Duponnois R, Garbaye J (1991) Mycorrhization helper bacteria associated with the Douglas fir Laccarialaccata symbiosis: effect in vitro and in glasshouse conditions. Ann Sci For 48:239–251

    Article  Google Scholar 

  • Durán N, Marcato PD, De Souza G, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3:203–208

    Article  Google Scholar 

  • Fauvart M, Michiels J (2008) Rhizobial secreted proteins as determinants of host specificity in the Rhizobium-legume symbiosis. FEMS Microbiol Lett 285:1–9

    Article  PubMed  CAS  Google Scholar 

  • Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275

    PubMed  CAS  Google Scholar 

  • Gambello MJ, Iglewski BH (1991) Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J Bacteriol 173:3000–3009

    PubMed  CAS  Google Scholar 

  • Garbaye J (1994) Helper bacteria – a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Article  Google Scholar 

  • Garbaye J, Bowen GD (1987) Effect of different microflora on the success of ectomycorrhizal inoculation of Pinus radiata. Planta 17:941–943

    Google Scholar 

  • Gera C, Srivastava S (2006) Quorum-sensing: the phenomenon of microbial communication. Curr Sci 90:666–676

    CAS  Google Scholar 

  • Givskov M, de Nys R, Manefield M, Gram L, Maximilien R, Eberl L, Molin S, Steinberg PD, Kjelleberg S (1996) Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J Bacteriol 178:6618–6622

    PubMed  CAS  Google Scholar 

  • González JE, Marketon MM (2003) Quorum sensing in nitrogen-fixing rhizobia. Microbiol Mol Biol Rev 67:574–592

    Article  PubMed  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant bacterium signaling process. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Greenberg PE (2003) Bacterial communication: tiny teamwork. Nature 424:134

    Article  PubMed  CAS  Google Scholar 

  • Gryndler M (2000) Interactions of arbuscular mycorrhizal fungi with other soil organisms. In: Kapulnik Y, Douds DDJ (eds) Arbuscular mycorrhizas: physiology and function. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 239–262

    Chapter  Google Scholar 

  • Guerts R, Fedorova E, Bisseling T (2005) Nod factor signalling genes and their function in the early stages of Rhizobium infection. Curr Opin Plant Biol 8:346–352

    Article  Google Scholar 

  • Haudecoeur E, Faure D (2010) A fine control of quorum-sensing communication in Agrobacterium tumefaciens. Commun Integr Biol 3:1–5

    Article  Google Scholar 

  • Hiltner L (1904) Über neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter besonderer Berücksichtigung der Begrünung und Brache. Arbeiten der Deutschen Landwirtschaftlichen Gesellschaft 98:59–78

    Google Scholar 

  • Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C (2007) Biosynthesis of silver and gold nanoparticles by novel sun dried Cinnamomum camphora leaf. Nanotechnology 18:105104–105114

    Article  Google Scholar 

  • Joerger R, Klaus T, Granqvist CG (2000) Biologically produced silver-carbon composite materials for optically functional thin film coatings. Adv Mater 12:407–409

    Article  CAS  Google Scholar 

  • Kent AD, Triplett EW (2002) Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu Rev Microbiol 56:211–236

    Article  PubMed  CAS  Google Scholar 

  • Knecht K, Seyffarth M, Desel C, Thurau T, Sherameti I, Lou B, Oelmüller R, Cai D (2010) Expression of BvGLP-1 encoding a germin-like protein from sugar beet in Arabidopsis thaliana leads to resistance against phytopathogenic fungi. Mol Plant Microbe Interact 23:446–457

    Article  PubMed  CAS  Google Scholar 

  • Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI (2007) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29:439–445

    Article  CAS  Google Scholar 

  • Lal A (2009) Quorum sensing. Resonance 14:866–871

    Article  CAS  Google Scholar 

  • Lammers PJ (2004) Symbiotic signalling: new functions for familiar proteins. New Phytol 16:324–326

    Article  Google Scholar 

  • Lazazzera BA, Grossman AD (1998) The ins and outs of peptide signalling. Trends Microbiol 7:288–294

    Article  Google Scholar 

  • Linderman RG (1988) Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizosphere effect. Phytopathology 78:366–371

    Google Scholar 

  • Manefield M, Rasmussen TB, Henzter M, Andersen JB, Steinberg P, Kjelleberg S, Givskov M (2002) Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology 148:1119–1127

    PubMed  CAS  Google Scholar 

  • Martínez-Romero E (2009) Coevolution in Rhizobium-legume symbiosis? DNA Cell Biol 28:361–370

    Article  PubMed  Google Scholar 

  • Meyer JR, Linderman RG (1986) Response of subterranean clover to dual inoculation with vesicular arbuscular fungi and a plant growth-promoting bacterium, Pseudomonas putida. Soil Biol Biochem 18:185–190

    Article  CAS  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    Article  PubMed  CAS  Google Scholar 

  • Minerdi D, Fani R, Gallo R, Boarino A, Bonfante P (2001) Nitrogen fixation genes in an endosymbiotic Burkholderia strain. Appl Environ Microbiol 67:725–732

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chembiochem 3:461–463

    Article  PubMed  CAS  Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 4:295–298

    Google Scholar 

  • Oelmüller R, Sherameti I, Tripathi S, Varma A (2009) Piriformospora indica, a cultivable root endophyte with multiple biotechnological applications. Symbiosis 49:1–17

    Article  Google Scholar 

  • Oldroyd GE, Downie JA (2006) Nuclear calcium changes at the core of symbiosis signalling. Curr Opin Plant Biol 9:351–357

    Article  PubMed  CAS  Google Scholar 

  • Oldroyd GE, Harrison MJ, Udvardi M (2005) Peace talks and trade deals. Keys to long-term harmony in legume-microbe symbioses. Plant Physiol 137:1205–1210

    Article  PubMed  CAS  Google Scholar 

  • Parsek MR, Greenberg EP (2000) Acyl-homoserine lactone quorum sensing in gram-negative bacteria: a signalling mechanism involved in associations with higher organisms. Proc Natl Acad Sci USA 97:8789–8793

    Article  PubMed  CAS  Google Scholar 

  • Pearson JP, Passador L, Iglewski BH, Greenberg EP (1995) A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc Natl Acad Sci USA 92:1490–1494

    Article  PubMed  CAS  Google Scholar 

  • Peters NK, Frost JW, Long SR (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:977–980

    Article  PubMed  CAS  Google Scholar 

  • Pierson EA, Wood DW, Cannon JA, Blachere FM, Piers LS (1998) Interpopulation signalling via N-acyl-homoserine lactones among bacteria in the wheat rhizosphere. Mol Plant Microbe Interact 11:1078–1084

    Article  CAS  Google Scholar 

  • Pinton R, Varanini Z, Nannipieri P (2001) The rhizosphere as a site of biochemical interactions among soil components, plants and microorganisms. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances in the soil–plant interface. Dekker, New York, NY, pp 1–17

    Google Scholar 

  • Samaj J, Baluska F, Voigt B, Schlicht M, Volkmann D, Menzel D (2004) Endocytosis, actin cytoskeleton and signaling. Plant Physiol 135:1150–1161

    Article  PubMed  CAS  Google Scholar 

  • Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85:162–170

    CAS  Google Scholar 

  • Schuster M, Greenberg EP (2006) A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int J Med Microbiol 296:73–81

    Article  PubMed  CAS  Google Scholar 

  • Schwarz M, Romano D, Gheorghe M (2008) Visualizing bacteria quorum sensing swarm intelligence algorithms and applications symposium, AISB 2008 convention communication, interaction and social intelligence, Aberdeen, Scotland, UK, 1–4 April 2008

    Google Scholar 

  • Senadheera D, Cvitkovitch DG (2008) Quorum sensing and biofilm formation by Streptococcus mutans. Adv Exp Med Biol 631:178–188

    Article  PubMed  CAS  Google Scholar 

  • Senapati S, Mandal D, Ahmad A, Khan MI, Sastry M, Kumar R (2004) Fungus mediated synthesis of silver nanoparticles: a novel biological approach. Indian J Phys 78A:101–105

    CAS  Google Scholar 

  • Shahi SK, Patra P (2003) Microbially synthesized bioactive nanoparticles and their formulation active against human pathogenic fungi. Rev Adv Mater Sci 5:501–509

    Google Scholar 

  • Shapiro JA (1998) Thinking about bacterial populations as multicellular organisms. Annu Rev Microbiol 52:81–104

    Article  PubMed  CAS  Google Scholar 

  • Sharma A, Sahgal M, Johri BN (2003) Microbial communication in the rhizosphere: operation of quorum sensing. Curr Sci 85:1164–1172

    CAS  Google Scholar 

  • Shashi SK, Patra M (2003) Microbially synthesized bioactive nanoparticles and their formulation active against human pathogenic fungi. Rev Adv Mater Sci 5:501–509

    Google Scholar 

  • Shelp BJ, Bown AW, Faure D (2006) Extracellular g-aminobutyrate mediates communication between plants and other organisms. Plant Physiol 142:1350–1352

    Article  PubMed  CAS  Google Scholar 

  • Sherameti I, Shahollari B, Venus Y, Altschmied L, Varma A, Oelmüller R (2005) The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters. J Biol Chem 280:26241–26247

    Article  PubMed  CAS  Google Scholar 

  • Sherameti I, Venus Y, Drzewiecki C, Tripathi S, Dan VM, Nitz I, Varma A, Grundler FM, Oelmüller R (2008) PYK10, a beta-glucosidase located in the endoplasmatic reticulum, is crucial for the beneficial interaction between Arabidopsis thaliana and the endophytic fungus Piriformospora indica. Plant J 54:428–439

    Article  PubMed  CAS  Google Scholar 

  • Soto MJ, Sanjuán J, Olivares J (2006) Rhizobia and plant-pathogenic bacteria: common infection weapons. Microbiology 152:3167–3174

    Article  PubMed  CAS  Google Scholar 

  • Tripathy BC, Sherameti I, Oelmüller R (2010) Siroheme: an essential component for life on earth. Plant Signal Behav 5:1–5

    Article  Google Scholar 

  • Vadassery J, Ritter C, Venus Y, Camehl I, Varma A, Shahollari B, Novák O, Strnad M, Ludwig-Müller J, Oelmüller R (2008) The role of auxins and cytokinins in the mutualistic interaction between Arabidopsis and Piriformospora indica. Mol Plant Microbe Interact 21:1371–1383

    Article  PubMed  CAS  Google Scholar 

  • Vadassery J, Ranf S, Drzewiecki C, Mithöfer A, Mazars C, Scheel D, Lee J, Oelmüller R (2009a) A cell wall extract from the endophytic fungus Piriformospora indica promotes growth of Arabidopsis seedlings and induces intracellular calcium elevation in roots. Plant J 59:193–206

    Article  PubMed  CAS  Google Scholar 

  • Vadassery J, Tripathi S, Prasad R, Varma A, Oelmüller R (2009b) Monodehydroascorbate reductase 2 and dehydroascorbate reductase 5 are crucial for a mutualistic interaction between Piriformospora indica and Arabidopsis. J Plant Physiol 166:1263–1274

    Article  PubMed  CAS  Google Scholar 

  • Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Article  Google Scholar 

  • Varma A, Verma S, Sudha SN, Butehorn B, Franken P (1999) Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl Environ Microbiol 65:2741–2744

    PubMed  CAS  Google Scholar 

  • Varma A(2009) In: Ajit Varma (Ed) Mycorrhiza Springer-Verlag, Germany, pp 1–783

    Google Scholar 

  • Verma S, Varma A, Karl-Heinz R, Hassel A, Kost G, Sarbhoy A, Bisen P, Bütehorn P, Franken P (1998) Piriformospora indica gen. nov., a new root-colonizing fungus. Mycologia 90:895–909

    Article  Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

    Article  PubMed  CAS  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    Article  PubMed  CAS  Google Scholar 

  • West SA, Griffin AS, Gardner A, Diggle SP (2006) Social evolution theory for microorganisms. Nat Rev Microbiol 4:597–607

    Article  PubMed  CAS  Google Scholar 

  • White CE, Finan TM (2009) Quorum quenching in Agrobacterium tumefaciens: chance or necessity? J Bacteriol 191:1123–1125

    Article  PubMed  CAS  Google Scholar 

  • Whitehead NA, Barnard AM, Slater H, Simpson NJL, Salmond GPC (2001) Quorum-sensing in gram-negative bacteria. FEMS Microbiol Rev 25:365–404

    Article  PubMed  CAS  Google Scholar 

  • Williams P (2007) Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology 153:3923–3938

    Article  PubMed  CAS  Google Scholar 

  • Williams P, Winzer K, Chan WC, Camara M (2007) Look who’s talking: communication and quorum sensing in the bacterial world. Philos Trans R Soc Lond B Biol Sci 362:1119–1134

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski-Dyé F, Downie JA (2002) Quorum-sensing in Rhizobium. Antonie Van Leeuwenhoek 81:397–407

    Article  PubMed  Google Scholar 

  • Witzany G (2008) Biocommunication of unicellular and multicellular organisms. TripleC 6:24–53

    Google Scholar 

  • Witzany G (2010) Plant communication. In: Witzany G (ed) Biocommunication and natural genome editing. Springer, Dordrecht, The Netherlands, pp 27–52

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit Varma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Oelmüller, R. et al. (2011). Microbe–Microbe, Microbe–Plant Biocommunication. In: Witzany, G. (eds) Biocommunication in Soil Microorganisms. Soil Biology, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14512-4_18

Download citation

Publish with us

Policies and ethics