Skip to main content

Beneficial Rhizobacteria Induce Plant Growth: Mapping Signaling Networks in Arabidopsis

  • Chapter
  • First Online:

Part of the book series: Soil Biology ((SOILBIOL,volume 23))

Abstract

The survival of soil microorganisms is largely dependent upon growth and productivity of the plant community. Plants not only supply organic matter for decomposers, but also release up to 30% of their photosynthetic output in the form of root exudates that attract and maintain fungal and bacterial soil colonies. Plant growth-promoting rhizobacteria (PGPR) are naturally occurring microbes that colonize roots and stimulate plant growth. Identification of bacterial chemical signals that trigger such growth promotion has been limited in part by the understanding of how plants respond to external stimuli. With an increasing appreciation of how volatile organic chemicals (VOCs) serve to regulate primary and secondary plant metabolism, significant advances have been achieved in understanding how beneficial microbes drive growth and development in the model plant Arabidopsis. Here the role of bacterial volatiles in regulating plant growth through hormone action, increased photosynthetic efficiency, and sugar sensing in Arabidopsis is reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148–2152

    Article  PubMed  CAS  Google Scholar 

  • Banchio E, Xie X, Zhang H, Paré PW (2009) Soil bacteria elevate essential oil accumulation and emissions in sweet basil. J Agric Food Chem 57:653–657

    Article  PubMed  CAS  Google Scholar 

  • Baskin TI, Betzner AS, Hoggart R, Cork A, Williamson RE (1992) Root morphology mutants in Arabidopsis thaliana. Aust J Plant Physiol 19:427–437

    Article  Google Scholar 

  • Behrenfeld MJ, Bale AJ, Kolber ZS, Aiken J, Falkowski PG (1996) Confirmation of iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature 383:508–511

    Article  CAS  Google Scholar 

  • Boerjan W, Cervera MT, Delarue M, Beeckman T, Dewitte W, Bellini C, Caboche M, Van Onckelen H, Van Montagu M, Inze D (1995) Superroot, a recessive mutation in Arabidopsis, confers auxin over production. Plant Cell 7:1405–1419

    PubMed  CAS  Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (2000) In: Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, MD, pp 52–89

    Google Scholar 

  • Colangelo EP, Guerinot ML (2004) The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. Plant Cell 16:3400–3412

    Article  PubMed  CAS  Google Scholar 

  • Curie C, Briat JF (2003) Iron transport and signaling in plants. Annu Rev Plant Biol 54:183–206

    Article  PubMed  CAS  Google Scholar 

  • Farag MA, Ryu CM, Sumner LW, Paré PW (2006) GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67:2262–2268

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein RR, Gampala SSL, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:S15–S45

    PubMed  CAS  Google Scholar 

  • Glick BR, Patten CN, Holguin G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth promotion bacteria. Imperial College Press, London, pp 1–13

    Book  Google Scholar 

  • Grusak MA (1995) Whole-root iron (III)-reductase activity throughout the life cycle of iron grown Pisum sativum L. (Fabaceae): relevance to the iron nutrition of developing seeds. Planta 197:111–117

    Article  CAS  Google Scholar 

  • Jones DL, Dennis PG, Owen AG, van Hees PAW (2003) Organic acid behavior in soils-misconceptions and knowledge gaps. Plant Soil 248:31–41

    Article  CAS  Google Scholar 

  • Keller CP, Stahlberg R, Barkawi LS, Cohen JD (2004) Long-term inhibition by auxin of leaf blade expansion in bean and Arabidopsis. Plant Physiol 134:1217–1226

    Article  PubMed  CAS  Google Scholar 

  • Klee HJ, Horsch RB, Hinchee MA, Hein MB, Hoffman NL (1987) The effects of overproduction of two Agrobacterium tumefaciens T-DNA auxin biosynthetic gene products in transgenic petunia plants. Genes Dev 1:86–96

    Article  CAS  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Kloepper JW, Zablotowicz RM, Tipping EM, Lifshitz R (1991). Plant growth promotion mediated by bacterial rhizosphere colonizers. In: Keister KL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer Academic Publishers, Dordecht, pp 315–326

    Google Scholar 

  • Kloepper JW, Rodriguez-Kabana R, Zehnder GW, Murphy J, Sikora E, Fernandez C (1999) Plant root–bacterial interactions in biological control of soil borne diseases and potential extension to systemic and foliar diseases. Austr Plant Pathol 28:27–33

    Article  Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    Article  PubMed  CAS  Google Scholar 

  • Kokalis-Burelle N, Kloepper JW, Reddy MS (2006) Plant growth-promotion rhizobacteria as transplant amendments and their effects on indigenous rhizosphere microorganisms. Appl Soil Ecol 31:91–100

    Article  Google Scholar 

  • Lin W, Okon Y, Hardy RWF (1983) Enhanced mineral uptake by Zea mays and sorghum bicolor roots inoculated with Azospirillum brasilense. Appl Environ Microbiol 45:1775–1779

    PubMed  CAS  Google Scholar 

  • Loper JE, Schroth MN (1986) Influence of bacterial sources of indole-3-acetic acid on root elongation of sugar beet. Phytopathology 76:386–389

    Article  CAS  Google Scholar 

  • Lopez-Molina L, Mongrand S, Chua NH (2001) A post-germination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc Natl Acad Sci USA 98:4782–4787

    Article  PubMed  CAS  Google Scholar 

  • Luschnig C, Gaxiola RA, GrisaW P, Fink GR (1998) EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev 12:2175–2187

    Article  PubMed  CAS  Google Scholar 

  • MacDonald EMS, Powell GK, Regier DA, Glass NL, Roberto F, Kosuge T, Morris RO (1986) Secretion of zwatin, Ribosylzeatin, and ribosyl-1″-methylzeatin by Pseudomonas savastanoi plasmidcoded cytokinin biosynthesis. Plant Physiol 82:742–747

    Article  PubMed  CAS  Google Scholar 

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    Article  PubMed  CAS  Google Scholar 

  • Paré PW, Farag MA, Krishnamachari V, Zhang H, Ryu CM, Kloepper JW (2005) Elicitors and priming agents initiate plant defense responses. Photosynth Res 85:149–159

    Article  PubMed  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  PubMed  CAS  Google Scholar 

  • Romera FJ, Alcantara E, de Diaz LA, Guardia M (1992) Role of roots and shoots in the regulation of the Fe efficiency responses in sunflower and cucumber. Physiol Plant 85:141–146

    Article  CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932

    Article  PubMed  CAS  Google Scholar 

  • Sandmann G (1985) Consequences of iron-deficiency on photosynthetic and respiratory electron-transport in blue-green-algae. Photosynth Res 6:261–271

    Article  CAS  Google Scholar 

  • Schiefelbein JW, Somerville C (1990) Genetic control of root hair development in Arabidopsis thaliana. Plant Cell 2:235–243

    PubMed  CAS  Google Scholar 

  • Schmidt W, Schuck C (1996) Pyridine nucleotide pool size changes in iron-deficient Plantago lanceolata roots during reduction of external oxidants. Physiol Plant 98:215–221

    Article  CAS  Google Scholar 

  • Sieberer T, Seifert GJ, Hauser MT, Grisafi P, Fink GR, Luschnig C (2000) Post-transcriptional control of the Arabidopsis auxin eflux carrier EIR1 requires AXR1. Curr Biol 10:1595–1598

    Article  PubMed  CAS  Google Scholar 

  • Smeekens S (2000) Sugar-induced signal transduction in plants. Annu Rev Plant Physiol Plant Mol Biol 51:49–81

    Article  PubMed  CAS  Google Scholar 

  • Spiller S, Terry N (1980) Limiting factors in photosynthesis II. Iron stress diminishes photochemical capacity by reducing the number of photosynthetic units. Plant Physiol 65:121–125

    Article  PubMed  CAS  Google Scholar 

  • Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31:1847–1852

    Article  CAS  Google Scholar 

  • Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971

    PubMed  CAS  Google Scholar 

  • Vert GA, Briat JF, Curie C (2003) Dual regulation of the Arabidopsis high-affinity root iron uptake system by local and long-distance signals. Plant Physiol 132:796–804

    Article  PubMed  CAS  Google Scholar 

  • Winicur ZM, Zhang GF, Staehelin LA (1998) Auxin deprivation induces synchronous golgi differentiation in suspension-cultured tobacco BY-2 cells. Plant Physiol 117:501–513

    Article  PubMed  CAS  Google Scholar 

  • Xie X, Zhang H, Paré PW (2009) Sustained growth promotion in Arabidopsis with long-term exposure to the beneficial soil bacterium Bacillus subtilis (GB03). Plant Signal Behav 4:1–6

    Article  Google Scholar 

  • Xiong L, Zhu JK (2002) Regulation of abscisic acid biosynthesis. Plant Physiol 133:29–36

    Article  Google Scholar 

  • Zazimalova E, Opatrny Z, Brezinova A (1995) The effect of auxin starvation on the growth of auxin-dependent tobacco cell culture dynamics of auxin binding activity and endogenous free IAA content. J Exp Bot 46:1205–1213

    Article  CAS  Google Scholar 

  • Zhang H, Kim MS, Krishnamachari V, Payton P, Sun Y, Grimson M et al (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226:839–851

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Paré PW (2008a) Soil bacteria confer plant salt tolerance by tissue specific regulation of the sodium transporter HKT1. Mol Plant Microbe Interact 21:737–744

    Article  PubMed  Google Scholar 

  • Zhang H, Xie X, Kim MS, Kornyeyev DA, Holaday S, Paré PW (2008b) Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels. Plant J 56:264–273

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Sun Y, Xie X, Kim M-S, Dowd SE, Paré PW (2009) A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant J 58:568–577

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the Robert Welch Foundation (D-1478) and the ACS/Frasch Foundation for Chemical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul W. Paré .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Paré, P.W. et al. (2011). Beneficial Rhizobacteria Induce Plant Growth: Mapping Signaling Networks in Arabidopsis . In: Witzany, G. (eds) Biocommunication in Soil Microorganisms. Soil Biology, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14512-4_15

Download citation

Publish with us

Policies and ethics