Skip to main content

Rhamnolipids: Detection, Analysis, Biosynthesis, Genetic Regulation, and Bioengineering of Production

  • Chapter
  • First Online:
Biosurfactants

Part of the book series: Microbiology Monographs ((MICROMONO,volume 20))

Abstract

As promising biotechnological products, rhamnolipids (RLs) are the most investigated biosurfactants. Over the years, important efforts have been spent and an array of techniques has been developed for the isolation of producing bacterial strains and the characterization of a large variety of RL homologs and congeners. Investigations on RL production by the best known producer, the opportunistic pathogen Pseudomonas aeruginosa, have shown that production of RLs proceeds through de novo biosynthesis of precursors. Over the last 15 years, the genetic details underlying RL production in P. aeruginosa have been mostly unraveled, revealing a complex regulatory mechanism controlled by quorum sensing pathways of intercellular communication. A number of nutritional and cultivation factors affecting RL productivity have also been identified, while the use of many affordable and renewable raw substrates has been described to optimize the production. Multidisciplinary approaches are increasingly adopted to develop methods for the safe, cost-effective, and highly efficient production of RLs at the industrial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadi HAH, Rashedi H, Amoabediny G, Asadi MM (2009) Purification of rhamnolipid using colloidal magnetic nanoparticles. Afr J Biotechnol 8:3097–3106

    CAS  Google Scholar 

  • Abalos A, Pinazo A, Infante MR, Casals M, Garcia F, Manresa A (2001) Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir 17:1367–1371

    CAS  Google Scholar 

  • Abalos A, Maximo F, Manresa MA, Bastida J (2002) Utilization of response surface methodology to optimize the culture media for the production of rhamnolipids by Pseudomonas aeruginosa AT10. J Chem Technol Biotechnol 77:777–784

    CAS  Google Scholar 

  • Abdel-Mawgoud AM, Aboulwafa MM, Hassouna NAH (2009) Characterization of rhamnolipid produced by Pseudomonas aeruginosa isolate BS20. Appl Biochem Biotechnol 157:329–345

    PubMed  Google Scholar 

  • Abdel-Mawgoud AM, Lépine F, Déziel E (2010) Rhamnolipids: diversity of structures, microbial origins, and roles. Appl Microbiol Biotechnol 86:1323–1336

    PubMed  Google Scholar 

  • Abouseoud M, Yataghene A, Amrane A, Maachi R (2008) Biosurfactant production by free and alginate entrapped cells of Pseudomonas fluorescens. J Ind Microbiol Biotechnol 35:1303–1308

    PubMed  CAS  Google Scholar 

  • Al-Tahhan RA, Sandrin TR, Bodour AA, Maier RM (2000) Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates. Appl Environ Microbiol 66:3262–3268

    PubMed  CAS  Google Scholar 

  • Andrä J, Rademann J, Howe J, Koch MHJ, Heine H, Zahringer U, Brandenburg K (2006) Endotoxin-like properties of a rhamnolipid exotoxin from Burkholderia (Pseudomonas) plantarii: immune cell stimulation and biophysical characterization. Biol Chem 387:301–310

    PubMed  Google Scholar 

  • Arino S, Marchal R, Vandecasteele JP (1996) Identification and production of a rhamnolipidic biosurfactant by a Pseudomonas species. Appl Microbiol Biotechnol 45:162–168

    CAS  Google Scholar 

  • Arino S, Marchal R, Vandecasteele JP (1998a) Involvement of a rhamnolipid-producing strain of Pseudomonas aeruginosa in the degradation of polycyclic aromatic hydrocarbons by a bacterial community. J Appl Microbiol 84:769–776

    PubMed  CAS  Google Scholar 

  • Arino S, Marchal R, Vandecasteele JP (1998b) Production of new extracellular glycolipids by a strain of Cellulomonas cellulans (Oerskovia xanthineolytica) and their structural characterization. Can J Microbiol 44:238–243

    CAS  Google Scholar 

  • Asci Y, Nurbas M, Acikel YS (2007) Sorption of Cd(II) onto kaolin as a soil component and desorption of Cd(II) from kaolin using rhamnolipid biosurfactant. J Hazard Mater 139:50–56

    PubMed  CAS  Google Scholar 

  • Asci Y, Nurbas M, Acikel YS (2008) Removal of zinc ions from a soil component Na-feldspar by a rhamnolipid biosurfactant. Desalination 223(1–3):361–365

    CAS  Google Scholar 

  • Avramova T, Sotirova A, Galabova D, Karpenko E (2008) Effect of Triton X-100 and rhamnolipid PS-17 on the mineralization of phenanthrene by Pseudomonas sp cells. Int Biodeterior Biodegradation 62:415–420

    CAS  Google Scholar 

  • Bauer J, Brandenburg K, Zahringer U, Rademann J (2006) Chemical synthesis of a glycolipid library by a solid-phase strategy allows elucidation of the structural specificity of immunostimulation by rhamnolipids. Chem Eur J 12:7116–7124

    PubMed  CAS  Google Scholar 

  • Beal R, Betts WB (2000) Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in Pseudomonas aeruginosa. J Appl Microbiol 89:158–168

    PubMed  CAS  Google Scholar 

  • Benincasa M (2007) Rhamnolipid produced from agroindustrial wastes enhances hydrocarbon biodegradation in contaminated soil. Curr Microbiol 54:445–449

    PubMed  CAS  Google Scholar 

  • Benincasa M, Contiero J, Manresa MA, Moraes IO (2002) Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soapstock as the sole carbon source. J Food Eng 54:283–288

    Google Scholar 

  • Benincasa M, Abalos A, Oliveira I, Manresa A (2004) Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol 85:1–8

    CAS  Google Scholar 

  • Bergström S, Theorell H, Davide H (1946a) On a metabolic product of Ps. pyocyania. Pyolipic acid active against M. tuberculosis. Arkiv Kemi Mineral Geol 23A:1–12

    Google Scholar 

  • Bergström S, Theorell H, Davide H (1946b) Pyolipic acid. A metabolic product of Pseudomonas pyocyanea active against Mycobacterium tuberculosis. Arch Biochem Biophys 10:165–166

    Google Scholar 

  • Bjarnsholt T, Givskov M (2007) The role of quorum sensing in the pathogenicity of the cunning aggressor Pseudomonas aeruginosa. Anal Bioanal Chem 387:409–414

    PubMed  CAS  Google Scholar 

  • Bollinger N, Hassett DJ, Iglewski BH, Costerton JW, McDermott TR (2001) Gene expression in Pseudomonas aeruginosa: evidence of iron override effects on quorum sensing and biofilm-specific gene regulation. J Bacteriol 183:1990–1996

    PubMed  CAS  Google Scholar 

  • Bredenbruch F, Nimtz M, Wray V, Morr M, Muller R, Häussler S (2005) Biosynthetic pathway of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines. J Bacteriol 187:3630–3635

    PubMed  CAS  Google Scholar 

  • Bredenbruch F, Geffers R, Nimtz M, Buer J, Häussler S (2006) The Pseudomonas aeruginosa quinolone signal (PQS) has an iron-chelating activity. Environ Microbiol 8:1318–1329

    PubMed  CAS  Google Scholar 

  • Brencic A, Lory S (2009) Determination of the regulon and identification of novel mRNA targets of Pseudomonas aeruginosa RsmA. Mol Microbiol 72:612–632

    PubMed  CAS  Google Scholar 

  • Burger MM, Glaser L, Burton RM (1963) The enzymatic synthesis of a rhamnose-containing glycolipid by extracts of Pseudomonas aeruginosa J. Biol Chem 238:2595–2602

    CAS  Google Scholar 

  • Burger MM, Glaser L, Burton RM, Elizabeth FN, Victor G (1966) Formation of rhamnolipids of Pseudomonas aeruginosa. Methods Enzymol, Marcel Dekker, Inc., New York 8:441–445

    Google Scholar 

  • Byrd MS, Sadovskaya I, Vinogradov E, Lu H, Sprinkle AB, Richardson SH, Ma L, Ralston B, Parsek MR, Anderson EM, Lam JS, Wozniak DJ (2009) Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production. Mol Microbiol 73:622–638

    PubMed  CAS  Google Scholar 

  • Cabrera-Valladares N, Richardson AP, Olvera C, Trevino LG, Déziel E, Lépine F, Soberón-Chávez G (2006) Monorhamnolipids and 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) production using Escherichia coli as a heterologous host. Appl Microbiol Biotechnol 73:187–194

    PubMed  CAS  Google Scholar 

  • Caiazza NC, Shanks RMQ, O’Toole GA (2005) Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa. J Bacteriol 187:7351–7361

    PubMed  CAS  Google Scholar 

  • Calfee MW, Coleman JP, Pesci EC (2001) Interference with Pseudomonas quinolone signal synthesis inhibits virulence factor expression by Pseudomonas aeruginosa. Proc Natl Acad Sci USA 98:11633–11637

    PubMed  CAS  Google Scholar 

  • Cameotra SS, Singh P (2009) Synthesis of rhamnolipid biosurfactant and mode of hexadecane uptake by Pseudomonas species. Microb Cell Fact 8:16

    PubMed  Google Scholar 

  • Camilios Neto D, Meira JA, de Araujo JM, Mitchell DA, Krieger N (2008) Optimization of the production of rhamnolipids by Pseudomonas aeruginosa UFPEDA 614 in solid-state culture. Appl Microbiol Biotechnol 81:441–448

    PubMed  CAS  Google Scholar 

  • Campos-Garcia J, Caro AD, Najera R, Miller-Maier RM, Al-Tahhan RA, Soberón-Chávez G (1998) The Pseudomonas aeruginosa rhlG gene encodes an NADPH-dependent beta-ketoacyl reductase which is specifically involved in rhamnolipid synthesis. J Bacteriol 180:4442–4451

    PubMed  CAS  Google Scholar 

  • Carrillo PG, Mardaraz C, Pitta-Alvarez SI, Giulietti AM (1996) Isolation and selection of biosurfactant-producing bacteria. World J Microbiol Biotechnol 12:82–84

    Google Scholar 

  • Carty NL, Layland N, Colmer-Hamood JA, Calfee MW, Pesci EC, Hamood AN (2006) PtxR modulates the expression of QS-controlled virulence factors in the Pseudomonas aeruginosa strain PAO1. Mol Microbiol 61:782–794

    PubMed  CAS  Google Scholar 

  • Celik GY, Aslim B, Beyatli Y (2008) Enhanced crude oil biodegradation and rhamnolipid production by Pseudomonas stutzeri strain G11 in the presence of Tween-80 and Triton X-100. J Environ Biol 29:867–870

    PubMed  Google Scholar 

  • Cha M, Lee N, Kim M, Lee S (2008) Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida. Bioresour Technol 99:2192–2199

    PubMed  CAS  Google Scholar 

  • Chandrasekaran EV, BeMiller JN (1980) In: Whistler RL (ed) Methods in carbohydrate chemistry. Academic press, New York, p 89

    Google Scholar 

  • Chang JS, Chou CL, Lin GH, Sheu SY, Chen WM (2005) Pseudoxanthomonas kaohsiungensis, sp nov., a novel bacterium isolated from oil-polluted site produces extracellular surface activity. Syst Appl Microbiol 28:137–144

    PubMed  CAS  Google Scholar 

  • Chayabutra C, Wu J, Ju LK (2001) Rhamnolipid production by Pseudomonas aeruginosa under denitrification: effects of limiting nutrients and carbon substrates. Biotechnol Bioeng 72:25–33

    PubMed  CAS  Google Scholar 

  • Chen G (2004) Rhamnolipid biosurfactant behavior in solutions. J Biomater Sci Polym Ed 15:229–235

    PubMed  CAS  Google Scholar 

  • Chen SY, Lu WB, Wei YH, Chen WM, Chang JS (2007a) Improved production of biosurfactant with newly isolated Pseudomonas aeruginosa S2. Biotechnol Prog 23:661–666

    PubMed  CAS  Google Scholar 

  • Chen SY, Wei YH, Chang JS (2007b) Repeated pH-stat fed-batch fermentation for rhamnolipid production with indigenous Pseudomonas aeruginosa S2. Appl Microbiol Biotechnol 76:67–74

    PubMed  CAS  Google Scholar 

  • Cho YC, Ostrofsky EB, Rhee GY (2004) Effects of a rhamnolipid biosurfactant on the reductive dechlorination of polychlorinated biphenyls by St. Lawrence River (North America) microorganisms. Environ Toxicol Chem 23:1425–1430

    PubMed  CAS  Google Scholar 

  • Christova N, Tuleva B, Lalchev Z, Jordanova A, Jordanov B (2004) Rhamnolipid biosurfactants produced by Renibacterium salmoninarum 27BN during growth on n-hexadecane. Z Naturforsch C 59:70–74

    PubMed  CAS  Google Scholar 

  • Churchill SA, Griffin RA, Jones LP, Churchill PF (1995) Biodegradation rate enhancement of hydrocarbons by an oleophilic fertilizer and a rhamnolipid biosurfactant. J Environ Qual 24:19–28

    CAS  Google Scholar 

  • Cohen R, Exerowa D (2007) Surface forces and properties of foam films from rhamnolipid biosurfactants. Adv Colloid Interface Sci 134–135:24–34

    PubMed  Google Scholar 

  • Cohen R, Exerowa D, Pigov I, Heckmann R, Lang S (2004) DLVO and non-DLVO forces in thin liquid films from rhamnolipids. J Adhes 80:875–894

    CAS  Google Scholar 

  • Cosson P, Zulianello L, Join-Lambert O, Faurisson F, Gebbie L, Benghezal M, van Delden C, Curty LK, Köhler T (2002) Pseudomonas aeruginosa virulence analyzed in a Dictyostelium discoideum host system. J Bacteriol 184:3027–3033

    PubMed  CAS  Google Scholar 

  • De Jonghe K, De Dobbelaere I, Sarrazyn R, Hofte M (2005) Control of Phytophthora cryptogea in the hydroponic forcing of witloof chicory with the rhamnolipid-based biosurfactant formulation PRO1. Plant Pathol 54:219–226

    Google Scholar 

  • Dekimpe V, Déziel E (2009) Revisiting the quorum-sensing hierarchy in Pseudomonas aeruginosa: the transcriptional regulator RhlR regulates LasR-specific factors. Microbiology 155:712–723

    PubMed  CAS  Google Scholar 

  • deKoster CG, Vos B, Versluis C, Heerma W, Haverkamp J (1994) High-performance thin-layer chromatography/fast atom bombardment (tandem) mass spectrometry of Pseudomonas rhamnolipids. Biol Mass Spectrom 23:179–185

    CAS  Google Scholar 

  • Déziel E, Paquette G, Villemur R, Lépine F, Bisaillon JG (1996) Biosurfactant production by a soil Pseudomonas strain growing on polycyclic aromatic hydrocarbons. Appl Environ Microbiol 62:1908–1912

    PubMed  Google Scholar 

  • Déziel E, Comeau Y, Villemur R (1999a) Two-liquid-phase bioreactors for enhanced degradation of hydrophobic/toxic compounds. Biodegradation 10:219–233

    PubMed  Google Scholar 

  • Déziel E, Lépine F, Dennie D, Boismenu D, Mamer OA, Villemur R (1999b) Liquid chromatography/mass spectrometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on mannitol or naphthalene. Biochim Biophys Acta/Mol Cell Biol Lipids 1440:244–252

    Google Scholar 

  • Déziel E, Lépine F, Milot S, Villemur R (2000) Mass spectrometry monitoring of rhamnolipids from a growing culture of Pseudomonas aeruginosa strain 57RP. Biochim Biophys Acta/Mol Cell Biol Lipids 1485:145–152

    Google Scholar 

  • Déziel E, Lépine F, Milot S, Villemur R (2003) rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology 149:2005–2013

    PubMed  Google Scholar 

  • Déziel E, Lépine F, Milot S, He J, Mindrinos MN, Tompkins RG, Rahme LG (2004) Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci USA 101:1339–1344

    PubMed  Google Scholar 

  • Déziel E, Gopalan S, Tampakaki AP, Lépine F, Padfield KE, Saucier M, Xiao GP, Rahme LG (2005) The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl-L-homoserine lactones. Mol Microbiol 55:998–1014

    PubMed  Google Scholar 

  • Diggle SP, Winzer K, Lazdunski A, Williams P, Camara M (2002) Advancing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of N-acylhomoserine lactone production and virulence gene expression. J Bacteriol 184:2576–2586

    PubMed  CAS  Google Scholar 

  • Diggle SP, Winzer K, Chhabra SR, Worrall KE, Camara M, Williams P (2003) The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol 50:29–43

    PubMed  CAS  Google Scholar 

  • Dong YH, Zhang XF, Xu JL, Tan AT, Zhang LH (2005) VqsM, a novel AraC-type global regulator of quorum-sensing signalling and virulence in Pseudomonas aeruginosa. Mol Microbiol 58:552–564

    PubMed  CAS  Google Scholar 

  • Duan K, Surette MG (2007) Environmental regulation of Pseudomonas aeruginosa PAO1 Las and Rhl quorum-sensing systems. J Bacteriol 189:4827–4836

    PubMed  CAS  Google Scholar 

  • Dubeau D, Déziel E, Woods D, Lépine F (2009) Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids. BMC Microbiol 9:263

    PubMed  Google Scholar 

  • Dubern JF, Diggle SP (2008) Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. Mol Biosyst 4:882–888

    PubMed  CAS  Google Scholar 

  • Dubey KV, Juwarkar AA, Singh SK (2005) Adsorption-desorption process using wood-based activated carbon for recovery of biosurfactant from fermented distillery wastewater. Biotechnol Prog 21:860–867

    PubMed  CAS  Google Scholar 

  • Duynstee HI, van Vliet MJ, van der Marel GA, van Boom JH (1998) An efficient synthesis of (R)-3-{(R)-3-[2-O-(a-L-rhamnopyranosyl)-a-L-rhamnopyranosyl] oxydecanoyl}oxydecanoic acid, a rhamnolipid from Pseudomonas aeruginosa. Eur J Org Chem 1998:303–307

    Google Scholar 

  • Edwards JR, Hayashi JA (1965) Structure of a rhamnolipid from Pseudomonas aeruginosa. Arch Biochem Biophys 111:415–421

    PubMed  CAS  Google Scholar 

  • Farrow JM, Sund ZM, Ellison ML, Wade DS, Coleman JP, Pesci EC (2008) PqsE functions independently of PqsR-Pseudomonas quinolone signal and enhances the rhl quorum-sensing system. J Bacteriol 190:7043–7051

    PubMed  CAS  Google Scholar 

  • Fujita K, Akino T, Yoshioka H (1988) Characteristics of the heat-stable extracellular hemolysin from Pseudomonas aeruginosa. Infect Immun 56:1385–1387

    PubMed  CAS  Google Scholar 

  • Fuqua C, Greenberg EP (2002) Listening in on bacteria: acyl-homoserine lactone signalling. Nat Rev Mol Cell Biol 3:685–695

    PubMed  CAS  Google Scholar 

  • Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275

    PubMed  CAS  Google Scholar 

  • Gallagher LA, McKnight SL, Kuznetsova MS, Pesci EC, Manoil C (2002) Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J Bacteriol 184:6472–6480

    PubMed  CAS  Google Scholar 

  • Gartshore J, Lim YC, Cooper DG (2000) Quantitative analysis of biosurfactants using Fourier Transform Infrared (FT-IR) spectroscopy. Biotechnol Lett 22:169–172

    CAS  Google Scholar 

  • Giani C, Wullbrandt D, Rothert R, Meiwes J (1997) Pseudomonas aeruginosa and its use in a process for the biotechnological preparation of L-Rhamnose Hoechst Aktiengesellschaft. Frankfurt am Main, Germany, p 10

    Google Scholar 

  • Glaser L, Kornfeld S (1961) The enzymatic synthesis of thymidine-linked sugars. II- Thymidine diphosphate L-rhamnose. J Biol Chem 236:1795–1799

    PubMed  CAS  Google Scholar 

  • Glick R, Gilmour C, Tremblay J, Satanower S, Avidan O, Déziel E, Greenberg EP, Poole K, Banin E (2010) Increase in rhamnolipid synthesis under iron-limiting conditions influences surface motility and biofilm formation in Pseudomonas aeruginosa. J Bacteriol 192:2973–2980

    PubMed  CAS  Google Scholar 

  • Gross H, Loper JE (2009) Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep 26:1408–1446

    PubMed  CAS  Google Scholar 

  • Gruber T (1991) Verfahrenstechnische aspekte der kontinuierlichen produktion von biotensiden am beispiel der rhamnolipide Lehrstuhl für Bioprozesstechnik der Universität Stuttgart. Universität Stuttgart, Stuttgart, p 121

    Google Scholar 

  • Guerra-Santos L (1985) Physiology of Pseudomonas aeruginosa biosurfactant production in continuous culture Institute of Biotechnology. Swiss Federal Institute of Technology, Zürich

    Google Scholar 

  • Guerra-Santos L, Käppeli O, Fiechter A (1984) Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Appl Environ Microbiol 48:301–305

    PubMed  CAS  Google Scholar 

  • Guerra-Santos LH, Käppeli O, Fiechter A (1986) Dependence of Pseudomonas aeruginosa continous culture biosurfactant production on nutritional and environmental factors. Appl Microbiol Biotechnol 24:443–448

    CAS  Google Scholar 

  • Gunther NW, Nunez A, Fett W, Solaiman DKY (2005) Production of rhamnolipids by Pseudomonas chlororaphis, a nonpathogenic bacterium. Appl Environ Microbiol 71:2288–2293

    PubMed  CAS  Google Scholar 

  • Gunther NW, Nunez A, Fortis L, Solaiman DKY (2006) Proteomic based investigation of rhamnolipid production by Pseudomonas chlororaphis strain NRRL B-30761. J Ind Microbiol Biotechnol 33:914–920

    PubMed  CAS  Google Scholar 

  • Gupta R, Gobble TR, Schuster M (2009) GidA posttranscriptionally regulates rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 191:5785–5792

    PubMed  CAS  Google Scholar 

  • Haba E, Espuny MJ, Busquets M, Manresa A (2000) Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils. J Appl Microbiol 88:379–387

    PubMed  CAS  Google Scholar 

  • Haba E, Abalos A, Jauregui O, Espuny MJ, Manresa A (2003a) Use of liquid chromatography-mass spectroscopy for studying the composition and properties of rhamnolipids produced by different strains of Pseudomonas aeruginosa. J Surfactants Deterg 6:155–161

    CAS  Google Scholar 

  • Haba E, Pinazo A, Jauregui O, Espuny MJ, Infante MR, Manresa A (2003b) Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Biotechnol Bioeng 81:316–322

    PubMed  CAS  Google Scholar 

  • Haferburg D, Hommel R, Kleber H-P, Kluge S, Schuster G, Zschiegner H-J (1987) Antiphytovirale aktivität von rhamnolipid aus Pseudomonas aeruginosa. Acta Biotechnol 7:353–356

    CAS  Google Scholar 

  • Hansen J, Accorsini FR, Benincasa M (2008) Physicochemical properties of a biosurfactant produced from agroindustrial wastes. Int Biodeterior Biodegradation 62:15–16

    Google Scholar 

  • Hauser G, Karnovsky ML (1954) Studies on the production of glycolipide by Pseudomonas aeruginosa. J Bacteriol 68:645–654

    PubMed  CAS  Google Scholar 

  • Hauser G, Karnovsky ML (1957) Rhamnose and rhamnolipid biosynthesis by Pseudomonas aeruginosa. J Biol Chem 224:91–105

    PubMed  CAS  Google Scholar 

  • Hauser G, Karnovsky ML (1958) Studies on the biosynthesis of L-rhamnose. J Biol Chem 233:287–291

    PubMed  CAS  Google Scholar 

  • Häussler S, Nimtz M, Domke T, Wray V, Steinmetz I (1998) Purification and characterization of a cytotoxic exolipid of Burkholderia pseudomallei. Infect Immun 66:1588–1593

    PubMed  Google Scholar 

  • Häussler S, Rohde M, von Neuhoff N, Nimtz M, Steinmetz I (2003) Structural and functional cellular changes induced by Burkholderia pseudomallei rhamnolipid. Infect Immun 71:2970–2975

    PubMed  Google Scholar 

  • Helbert JR, Brown KD (1957) Color reaction of anthrone with monosaccharide mixtures and oligo- and polysaccharides containing hexuronic acids. Anal Chem 29:1464–1466

    CAS  Google Scholar 

  • Hembach T (1994) Untersuchungen zur mikrobiellen Umsetzung von Maiskeimöl zu Rhamnolipid Fakultät I Allgemeine und angewandte Naturwissenschaften der Universität Hohenheim. Universität Hohenheim, Stuttgart, p 105

    Google Scholar 

  • Heurlier K, Williams F, Heeb S, Dormond C, Pessi G, Singer D, Camara M, Williams P, Haas D (2004) Positive control of swarming, rhamnolipid synthesis, and lipase production by the posttranscriptional RsmA/RsmZ system in Pseudomonas aeruginosa PAO1. J Bacteriol 186:2936–2945

    PubMed  CAS  Google Scholar 

  • Heyd M, Kohnert A, Tan TH, Nusser M, Kirschhofer F, Brenner-Weiss G, Franzreb M, Berensmeier S (2008) Development and trends of biosurfactant analysis and purification using rhamnolipids as an example. Anal Bioanal Chem 391:1579–1590

    PubMed  CAS  Google Scholar 

  • Hirayama T, Kato I (1982) Novel methyl rhamnolipids from Pseudomonas aeruginosa. FEBS Lett 139:81–85

    CAS  Google Scholar 

  • Hoang TT, Schweizer HP (1997) Fatty acid biosynthesis in Pseudomonas aeruginosa: cloning and characterization of the fabAB operon encoding beta-hydroxyacyl-acyl carrier protein dehydratase (FabA) and beta-ketoacyl-acyl carrier protein synthase I (FabB). J Bacteriol 179:5326–5332

    PubMed  CAS  Google Scholar 

  • Hoang TT, Schweizer HP (1999) Characterization of Pseudomonas aeruginosa enoyl-acyl carrier protein reductase (FabI): a target for the antimicrobial triclosan and its role in acylated homoserine lactone synthesis. J Bacteriol 181:5489–5497

    PubMed  CAS  Google Scholar 

  • Hodge JE, Hofreiter BT (1962) In: Whistler RL, Wolfrom ML (eds) Methods in carbohydrate chemistry. Academic press, New York, p 380

    Google Scholar 

  • Hommel RK, Ratledge C (1993) Biosynthetic mechanisms of low molecular weight surfactants and their precursors molecules. In: Kosaric N (ed) Surfactant science series – Biosurfactants: production, properties, application. Marcel Dekker, New York

    Google Scholar 

  • Howe J, Bauer J, Andra J, Schromm AB, Ernst M, Rossle M, Zahringer U, Rademann J, Brandenburg K (2006) Biophysical characterization of synthetic rhamnolipids. FEBS J 273:5101–5112

    PubMed  CAS  Google Scholar 

  • Jain DK, Collins-Thompson DL, Lee H, Trevors JT (1991) A drop-collapsing test for screening surfactant-producing microorganisms. J Microbiol Meth 13:271–279

    Google Scholar 

  • Jarvis FG, Johnson MJ (1949) A glyco-lipide produced by Pseudomonas aeruginosa. J Am Chem Soc 71:4124–4126

    CAS  Google Scholar 

  • Jensen V, Lons D, Zaoui C, Bredenbruch F, Meissner A, Dieterich G, Munch R, Häussler S (2006) RhlR expression in Pseudomonas aeruginosa is modulated by the Pseudomonas quinolone signal via PhoB-dependent and -independent pathways. J Bacteriol 188:8601–8606

    PubMed  CAS  Google Scholar 

  • Jensen PO, Bjarnsholt T, Phipps R, Rasmussen TB, Calum H, Christoffersen L, Moser C, Williams P, Pressler T, Givskov M, Hoiby N (2007) Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology 153:1329–1338

    PubMed  CAS  Google Scholar 

  • Johnson MK, Boese-Marrazzo D (1980) Production and properties of heat-stable extracellular hemolysin from Pseudomonas aeruginosa. Infect Immun 29:1028–1033

    PubMed  CAS  Google Scholar 

  • Jude F, Kohler T, Branny P, Perron K, Mayer MP, Comte R, van Delden C (2003) Posttranscriptional control of quorum-sensing-dependent virulence genes by DksA in Pseudomonas aeruginosa. J Bacteriol 185:3558–3566

    PubMed  CAS  Google Scholar 

  • Juhas M, Wiehlmann L, Huber B, Jordan D, Lauber J, Salunkhe P, Limpert AS, von Gotz F, Steinmetz I, Eberl L, Tummler B (2004) Global regulation of quorum sensing and virulence by VqsR in Pseudomonas aeruginosa. Microbiology 150:831–841

    PubMed  CAS  Google Scholar 

  • Kim BS, Lee JY, Hwang BK (2000) In vivo control and in vitro antifungal activity of rhamnolipid B, a glycolipid antibiotic, against Phytophthora capsici and Colletotrichum orbiculare. Pest Manage Sci 56:1029–1035

    CAS  Google Scholar 

  • Kim EJ, Wang W, Deckwer WD, Zeng AP (2005) Expression of the quorum-sensing regulatory protein LasR is strongly affected by iron and oxygen concentrations in cultures of Pseudomonas aeruginosa irrespective of cell density. Microbiology 151:1127–1138

    PubMed  CAS  Google Scholar 

  • Koch AK, Käppeli O, Fiechter A, Reiser J (1991) Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. J Bacteriol 173:4212–4219

    PubMed  CAS  Google Scholar 

  • Köhler T, Curty LK, Barja F, van Delden C, Pechere JC (2000) Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 182:5990–5996

    PubMed  Google Scholar 

  • Kurioka S, Liu PV (1967) Effect of the hemolysin of Pseudomonas aeruginosa on phosphatides and on phospholipase C activity. J Bacteriol 93:670–674

    PubMed  CAS  Google Scholar 

  • Lang S, Katsiwela E, Wagner F (1989) Antimicrobial effects of biosurfactants. Fat Sci Technol 91:363–366

    CAS  Google Scholar 

  • Latifi A, Foglino M, Tanaka K, Williams P, Lazdunski A (1996) A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol 21:1137–1146

    PubMed  CAS  Google Scholar 

  • Lazdunski AM, Ventre I, Sturgis JN (2004) Regulatory circuits and communication in Gram-negative bacteria. Nat Rev Microbiol 2:581–592

    PubMed  CAS  Google Scholar 

  • Lee KM, Hwang SH, Ha SD, Jang JH, Lim DJ, Kong JY (2004) Rhamnolipid production in batch and fed-batch fermentation using Pseudomonas aeruginosa BYK-2 KCTC 18012P. Biotechnol Bioprocess Eng 9:267–273

    CAS  Google Scholar 

  • Lee M, Kim MK, Vancanneyt M, Swings J, Kim SH, Kang MS, Lee ST (2005) Tetragenococcus koreensis sp. nov., a novel rhamnolipid-producing bacterium. Int J Syst Evol Microbiol 55:1409–1413

    PubMed  CAS  Google Scholar 

  • Lépine F, Déziel E, Milot S, Villemur R (2002) Liquid chromatographic/mass spectrometric detection of the 3-(3-hydroxyalkanoyloxy)alkanoic acid precursors of rhamnolipids in Pseudomonas aeruginosa cultures. J Mass Spectrom 37:41–46

    PubMed  Google Scholar 

  • Lequette Y, Lee JH, Ledgham F, Lazdunski A, Greenberg EP (2006) A distinct QscR regulon in the Pseudomonas aeruginosa quorum-sensing circuit. J Bacteriol 188:3365–3370

    PubMed  CAS  Google Scholar 

  • Lindhout T, Lau PC, Brewer D, Lam JS (2009) Truncation in the core oligosaccharide of lipopolysaccharide affects flagella-mediated motility in Pseudomonas aeruginosa PAO1 via modulation of cell surface attachment. Microbiology 155:3449–3460

    PubMed  CAS  Google Scholar 

  • Linhardt RJ, Bakhit R, Daniels L, Mayerl F, Pickenhagen W (1989) Microbially produced rhamnolipid as a source of rhamnose. Biotechnol Bioeng 33:365–368

    PubMed  CAS  Google Scholar 

  • Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53

    PubMed  CAS  Google Scholar 

  • Manresa MA, Bastida J, Mercade ME, Robert M, Deandres C, Espuny MJ, Guinea J (1991) Kinetic-studies on surfactant production by Pseudomonas aeruginosa-44T1. J Ind Microbiol 8:133–136

    CAS  Google Scholar 

  • Martinez-Toledo A, Rios-Leal E, Vazquez-Duhalt R, Gonzalez-Chavez Mdel C, Esparza-Garcia JF, Rodriguez-Vazquez R (2006) Role of phenanthrene in rhamnolipid production by P. putida in different media. Environ Technol 27:137–142

    PubMed  CAS  Google Scholar 

  • Mata-Sandoval JC, Karns J, Torrents A (1999) High-performance liquid chromatography method for the characterization of rhamnolipid mixtures produced by Pseudomonas aeruginosa UG2 on corn oil. J Chromatogr A 864:211–220

    PubMed  CAS  Google Scholar 

  • Matsufuji M, Nakata K, Yoshimoto A (1997) High production of rhamnolipids by Pseudomonas aeruginosa growing on ethanol. Biotechnol Lett 19:1213–1215

    CAS  Google Scholar 

  • Mechaly A, Belakhov V, Shoham Y, Baasov T (1997) An efficient chemical-enzymatic synthesis of 4-nitrophenyl [beta]-xylobioside: a chromogenic substrate for xylanases. Carbohydr Res 304:111–115

    CAS  Google Scholar 

  • Medina G, Juarez K, Diaz R, Soberón-Chávez G (2003a) Transcriptional regulation of Pseudomonas aeruginosa rhlR, encoding a quorum-sensing regulatory protein. Microbiology 149:3073–3081

    PubMed  CAS  Google Scholar 

  • Medina G, Juarez K, Soberón-Chávez G (2003b) The Pseudomonas aeruginosa rhlAB operon is not expressed during the logarithmic phase of growth even in the presence of its activator RhlR and the autoinducer N-butyryl-homoserine lactone. J Bacteriol 185:377–380

    PubMed  CAS  Google Scholar 

  • Medina G, Juarez K, Valderrama B, Soberón-Chávez G (2003c) Mechanism of Pseudomonas aeruginosa RhlR transcriptional regulation of the rhlAB promoter. J Bacteriol 185:5976–5983

    PubMed  CAS  Google Scholar 

  • Mercade ME, Manresa MA, Robert M, Espuny MJ, Deandres C, Guinea J (1993) Olive oil mill effluent (OOME) – new substrate for biosurfactant production. Bioresour Technol 43:1–6

    CAS  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    PubMed  CAS  Google Scholar 

  • Miller DJ, Zhang YM, Rock CO, White SW (2006) Structure of RhlG, an essential beta-ketoacyl reductase in the rhamnolipid biosynthetic pathway of Pseudomonas aeruginosa. J Biol Chem 281:18025–18032

    PubMed  CAS  Google Scholar 

  • Monteiro SA, Sassaki GL, de Souza LM, Meira JA, de Araujo JM, Mitchell DA, Ramos LP, Krieger N (2007) Molecular and structural characterization of the biosurfactant produced by Pseudomonas aeruginosa DAUPE 614. Chem Phys Lipids 147:1–13

    PubMed  CAS  Google Scholar 

  • Morici LA, Carterson AJ, Wagner VE, Frisk A, Schurr JR, Bentrup KHZ, Hassett DJ, Iglewski BH, Sauer K, Schurr MJ (2007) Pseudomonas aeruginosa AlgR represses the Rhl quorum-sensing system in a biofilm-specific manner. J Bacteriol 189:7752–7764

    PubMed  CAS  Google Scholar 

  • Morikawa M, Hirata Y, Imanaka T (2000) A study on the structure-function relationship of lipopeptide biosurfactants. Biochim Biophys Acta/Mol Cell Biol Lipids 1488:211–218

    CAS  Google Scholar 

  • Müller MM, Hörmann B, Syldatk C, Hausmann R (2010) Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor systems. Appl Microbiol Biotechnol 87(1):167–174

    PubMed  Google Scholar 

  • Mulligan CN, Gibbs BF (1989) Correlation of nitrogen metabolism with biosurfactant production by Pseudomonas aeruginosa. Appl Environ Microbiol 55:3016–3019

    PubMed  CAS  Google Scholar 

  • Mulligan CN, Gibbs BF (1990) Recovery of biosurfactants by ultrafiltration. J Chem Technol Biotechnol 47:23–29

    PubMed  CAS  Google Scholar 

  • Mulligan C, Gibbs B (1993) Factors influencing the economics of biosurfactants. In: Kosaric N (ed) Biosurfactants: production, properties, applications. Marcel Dekker, NY, pp 329–371

    Google Scholar 

  • Nayak AS, Vijaykumar MH, Karegoudar TB (2009) Characterization of biosurfactant produced by Pseudoxanthomonas sp PNK-04 and its application in bioremediation. Int Biodeterior Biodegradation 63:73–79

    CAS  Google Scholar 

  • Nguyen TT, Sabatini DA (2009) Formulating alcohol-free microemulsions using rhamnolipid biosurfactant and rhamnolipid mixtures. J Surfactants Deterg 12:109–115

    CAS  Google Scholar 

  • Nielsen C, Stanghellini M, Ferrin D (2005) Efficacy of rhamnolipid and saponin biosurfactants in the management of Phytophthora root rot of pepper in a recirculating cultural system. Phytopathology 95:S75

    Google Scholar 

  • Nielsen CJ, Ferrin DM, Stanghellini ME (2006) Efficacy of biosurfactants in the management of Phytophthora capsici on pepper in recirculating hydroponic systems. Can J Plant Pathol 28:450–460

    CAS  Google Scholar 

  • Nitschke M, Costa S, Contiero J (2005) Rhamnolipid surfactants: an update on the general aspects of these remarkable biomolecules. Biotechnol Prog 21:1593–1600

    PubMed  CAS  Google Scholar 

  • Noordman WH, Brusseau ML, Janssen DB (2000) Adsorption of a multicomponent rhamnolipid surfactant to soil. Environ Sci Technol 34:832–838

    CAS  Google Scholar 

  • Ochoa-Loza FJ, Artiola JF, Maier RM (2001) Stability constants for the complexation of various metals with a rhamnolipid biosurfactant. J Environ Qual 30:479–485

    PubMed  CAS  Google Scholar 

  • Ochsner UA, Reiser J (1995) Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 92:6424–6428

    PubMed  CAS  Google Scholar 

  • Ochsner UA, Fiechter A, Reiser J (1994a) Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J Biol Chem 269:19787–19795

    PubMed  CAS  Google Scholar 

  • Ochsner UA, Koch A, Fiechter A, Reiser J (1994b) Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J Bacteriol 176:2044–2054

    PubMed  CAS  Google Scholar 

  • Ochsner UA, Reiser J, Fiechter A, Witholt B (1995) Production of Pseudomonas aeruginosa rhamnolipid biosurfactants in heterologous hosts. Appl Environ Microbiol 61:3503–3506

    PubMed  CAS  Google Scholar 

  • Ochsner UA, Hembach T, Fiechter A (1996) Production of rhamnolipid biosurfactants. Adv Biochem Eng Biotechnol 53:89–118

    PubMed  CAS  Google Scholar 

  • Oliveira FJS, Vazquez L, de Campos NP, de Franca FP (2009) Production of rhamnolipids by a Pseudomonas alcaligenes strain. Process Biochem 44:383–389

    CAS  Google Scholar 

  • Olvera C, Goldberg JB, Sanchez R, Soberón-Chávez G (1999) The Pseudomonas aeruginosa algC gene product participates in rhamnolipid biosynthesis. FEMS Microbiol Lett 179:85–90

    PubMed  CAS  Google Scholar 

  • Onbasli D, Aslim B (2008) Determination of antimicrobial activity and production of some metabolites by Pseudomonas aeruginosa B1 and B2 in sugar beet molasses. Afr J Biotechnol 7:4614–4619

    CAS  Google Scholar 

  • Onbasli D, Aslim B (2009) Biosurfactant production in sugar beet molasses by some Pseudomonas spp. J Environ Biol 30:161–163

    PubMed  CAS  Google Scholar 

  • Ozdemir G, Malayoglu U (2004) Wetting characteristics of aqueous rhamnolipids solutions. Colloids Surf B Biointerfaces 39:1–7

    PubMed  CAS  Google Scholar 

  • Ozdemir G, Peker S, Helvaci SS (2004) Effect of pH on the surface and interfacial behavior of rhamnolipids R1 and R2. Colloids Surf A Physicochem Eng Asp 234:135–143

    CAS  Google Scholar 

  • Pajarron AM, Dekoster CG, Heerma W, Schmidt M, Haverkamp J (1993) Structure identification of natural rhamnolipid mixtures by fast-atom-bombardment tandem mass-spectrometry. Glycoconj J 10:219–226

    Google Scholar 

  • Palanisamy P, Raichur AM (2009) Synthesis of spherical NiO nanoparticles through a novel biosurfactant mediated emulsion technique. Mater Sci Eng C Biomim Supramol Syst 29:199–204

    CAS  Google Scholar 

  • Pearson JP, Pesci EC, Iglewski BH (1997) Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 179:5756–5767

    PubMed  CAS  Google Scholar 

  • Pesci EC, Pearson JP, Seed PC, Iglewski BH (1997) Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 179:3127–3132

    PubMed  CAS  Google Scholar 

  • Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH (1999) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 96:11229–11234

    PubMed  CAS  Google Scholar 

  • Pham TH, Webb JS, Rehm BHA (2004) The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation. Microbiology 150:3405–3413

    PubMed  CAS  Google Scholar 

  • Piljac A, Stipcevic T, Piljac-Zegarac J, Piljac G (2008) Successful treatment of chronic decubitus ulcer with 0.1% dirhamnolipid ointment. J Cutan Med Surg 12:142–146

    PubMed  CAS  Google Scholar 

  • Pinzon N, Ju L-K (2009a) Improved detection of rhamnolipid production using agar plates containing methylene blue and cetyl trimethylammonium bromide. Biotechnol Lett 31:1583–1588

    PubMed  CAS  Google Scholar 

  • Pinzon NM, Ju LK (2009b) Analysis of rhamnolipid biosurfactants by methylene blue complexation. Appl Microbiol Biotechnol 82:975–981

    PubMed  CAS  Google Scholar 

  • Pornsunthorntawee O, Chavadej S, Rujiravanit R (2009) Solution properties and vesicle formation of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa SP4. Colloids Surf B Biointerfaces 72:6–15

    PubMed  CAS  Google Scholar 

  • Potvin E, Sanschagrin F, Levesque RC (2008) Sigma factors in Pseudomonas aeruginosa. FEMS Microbiol Rev 32:38–55

    PubMed  CAS  Google Scholar 

  • Price NPJ, Ray KJ, Vermillion K, Kuo TM (2009) MALDI-TOF mass spectrometry of naturally occurring mixtures of monorhamnolipids and dirhamnolipids. Carbohydr Res 344:204–209

    PubMed  CAS  Google Scholar 

  • Rahim R, Burrows LL, Monteiro MA, Perry MB, Lam JS (2000) Involvement of the rml locus in core oligosaccharide and O polysaccharide assembly in Pseudomonas aeruginosa. Microbiology 146:2803–2814

    PubMed  CAS  Google Scholar 

  • Rahim R, Ochsner UA, Olvera C, Graninger M, Messner P, Lam JS, Soberón-Chávez G (2001) Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Mol Microbiol 40:708–718

    PubMed  CAS  Google Scholar 

  • Rahman KSM, Rahman TJ, McClean S, Marchant R, Banat IM (2002) Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Biotechnol Prog 18:1277–1281

    PubMed  CAS  Google Scholar 

  • Raichur AM (2007) Dispersion of colloidal alumina using a rhamnolipid biosurfactant. J Dispersion Sci Technol 28:1272–1277

    CAS  Google Scholar 

  • Ramana KV, Charyulu NCLN, Karanth NG (1991) A mathematical model for the production of biosurfactants by Pseudomonas aeuginosa CFTR-6: production of biomass. J Chem Technol Biotechnol 51:525–538

    CAS  Google Scholar 

  • Rampioni G, Schuster M, Greenberg EP, Zennaro E, Leoni L (2009) Contribution of the RsaL global regulator to Pseudomonas aeruginosa virulence and biofilm formation. FEMS Microbiol Lett 301:210–217

    PubMed  CAS  Google Scholar 

  • Rehm BHA, Kruger N, Steinbuchel A (1998) A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis – the phaG gene from Pseudomonas putida KT2440 encodes a 3-hydroxyacyl-acyl carrier protein coenzyme A transferase. J Biol Chem 273:24044–24051

    PubMed  CAS  Google Scholar 

  • Rehm BHA, Mitsky TA, Steinbuchel A (2001) Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by pseudomonads: establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli. Appl Environ Microbiol 67:3102–3109

    PubMed  CAS  Google Scholar 

  • Reiling HE, Thanei-Wyss U, Guerra-Santos LH, Hirt R, Kappeli O, Fiechter A (1986) Pilot plant production of rhamnolipid biosurfactant by Pseudomonas aeruginosa. Appl Environ Microbiol 51:985–989

    PubMed  CAS  Google Scholar 

  • Remichkova M, Galabova D, Roeva I, Karpenko E, Shulga A, Galabov AS (2008) Anti-herpesvirus activities of Pseudomonas sp S-17 rhamnolipid and its complex with alginate. Z Naturforsch C 63:75–81

    PubMed  CAS  Google Scholar 

  • Rendell NB, Taylor GW, Somerville M, Todd H, Wilson R, Cole PJ (1990) Characterization of Pseudomonas rhamnolipids. Biochim Biophys Acta 1045:189–193

    PubMed  CAS  Google Scholar 

  • Ritter C, Luckner M (1971) Biosynthesis of 2-n-alkyl-4-hydroxyquinoline derivatives (pseudane) in Pseudomonas aeruginosa. Eur J Biochem 18:391–400

    PubMed  CAS  Google Scholar 

  • Robertson BD, Frosch M, van Putten JP (1994) The identification of cryptic rhamnose biosynthesis genes in Neisseria gonorrhoeae and their relationship to lipopolysaccharide biosynthesis. J Bacteriol 176:6915–6920

    PubMed  CAS  Google Scholar 

  • Rooney AP, Price NP, Ray KJ, Kuo TM (2009) Isolation and characterization of rhamnolipid-producing bacterial strains from a biodiesel facility. FEMS Microbiol Lett 295:82–87

    PubMed  CAS  Google Scholar 

  • Santa Anna LM, Sebastian GV, Menezes EP, Alves TLM, Santos AS, Pereira N, Freire DMG (2002) Production of biosurfactants from Pseudomonas aeruginosa PA1 isolated in oil environments. Braz J Chem Eng 19:159–166

    Google Scholar 

  • Sarachat T, Pornsunthorntawee O, Chavadej S, Rujiravanit R (2010) Purification and concentration of a rhamnolipid biosurfactant produced by Pseudomonas aeruginosa SP4 using foam fractionation. Bioresour Technol 101:324–330

    PubMed  CAS  Google Scholar 

  • Schaefer AL, Val DL, Hanzelka BL, Cronan JE Jr, Greenberg EP (1996) Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. Proc Natl Acad Sci USA 93:9505–9509

    PubMed  CAS  Google Scholar 

  • Schenk T, Schuphan I, Schmidt B (1995) High-performance liquid-chromatographic determination of the rhamnolipids produced by Pseudomonas aeruginosa. J Chromatogr A 693:7–13

    PubMed  CAS  Google Scholar 

  • Schenk T, Breitschwerdt A, Kessels G, Schuphan I, Schmidt B (1997) A biosynthetic route to [C-14]-labelled rhamnolipids. J Labelled Comp Radiopharm 39:705–710

    CAS  Google Scholar 

  • Schuster M, Lostroh CP, Ogi T, Greenberg EP (2003) Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185:2066–2079

    PubMed  CAS  Google Scholar 

  • Shen W, Zhao JF, Ai FX, Tuoheti S, Yang SL (2009) Components, structure and antimicrobial activity of metabolite of Pseudonomas sp. BS-03. Nanjing Li Gong Daxue Xuebao/J Nanjing Univ Sci Technol 33:814–819

    CAS  Google Scholar 

  • Siegmund I, Wagner F (1991) New method for detecting rhamnolipids excreted by Pseudomonas species during growth on mineral agar. Biotechnol Tech 5:265–268

    CAS  Google Scholar 

  • Siemann M, Wagner F (1993) Prospects and limits for the production of biosurfactants using immobilized biocatalysts. In: Kosaric N (ed) Surfactant science series – Biosurfactants. Marcel Dekker, New York, 48:99–133

    Google Scholar 

  • Sierra G (1960) Hemolytic effect of a glycolipid produced by Pseudomonas aeruginosa. Antonie Leeuwenhoek 26:189–192

    PubMed  CAS  Google Scholar 

  • Sim L, Ward OP, Li ZY (1997) Production and characterisation of a biosurfactant isolated from Pseudomonas aeruginosa UW-1. J Ind Microbiol Biotechnol 19:232–238

    PubMed  CAS  Google Scholar 

  • Singh A, Van Hamme JD, Ward OP (2007) Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnol Adv 25:99–121

    PubMed  CAS  Google Scholar 

  • Soberón-Chávez G (2004) Biosynthesis of rhamnolipids. In: Ramos J-L (ed) Pseudomonas. Kluwer/Plenum, New York, pp 173–189

    Google Scholar 

  • Soberón-Chávez G, Lépine F, Déziel E (2005) Production of rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 68:718–725

    PubMed  Google Scholar 

  • Sotirova AV, Spasova DI, Galabova DN, Karpenko E, Shulga A (2008) Rhamnolipid-biosurfactant permeabilizing effects on gram-positive and gram-negative bacterial strains. Curr Microbiol 56:639–644

    PubMed  CAS  Google Scholar 

  • Sotirova A, Spasova D, Vasileva-Tonkova E, Galabova D (2009) Effects of rhamnolipid-biosurfactant on cell surface of Pseudomonas aeruginosa. Microbiol Res 164:297–303

    PubMed  CAS  Google Scholar 

  • Southard WH, Hayashi JA, Barkulis SS (1959) Studies of streptococcal cell walls. IV. The conversion of D-glucose to cell wall L-rhamnose. J Bacteriol 78:79–81

    PubMed  CAS  Google Scholar 

  • Stipcevic T, Pijac A, Pijac G (2006) Enhanced healing of full-thickness burn wounds using di-rhamnolipid. Burns 32:24–34

    PubMed  Google Scholar 

  • Syldatk C, Wagner F (1987) Production of biosurfactants. In: Kosaric N, Cairns WL, Gray NCC (eds) Biosurfactants and biotechnology. Marcel Dekker, New York, pp 89–120

    Google Scholar 

  • Syldatk C, Matulovic U, Wagner F (1984) Biotenside – Neue Verfahren zur mikrobiellen Herstellung grenzflächenaktiver, anionischer Glykolipide. Biotech-Forum 1:58–66

    Google Scholar 

  • Syldatk C, Lang S, Matulovic U, Wagner F (1985) Production of four interfacial active rhamnolipids from n-alkanes or glycerol by resting cells of Pseudomonas species DSM 2874. Z Naturforsch C 40:61–67

    PubMed  CAS  Google Scholar 

  • Timm A, Steinbuchel A (1990) Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads. Appl Environ Microbiol 56:3360–3367

    PubMed  CAS  Google Scholar 

  • Totten PA, Lara JC, Lory S (1990) The rpoN gene product of Pseudomonas aeruginosa is required for expression of diverse genes, including the flagellin gene. J Bacteriol 172:389–396

    PubMed  CAS  Google Scholar 

  • Tremblay J, Richardson AP, Lépine F, Déziel E (2007) Self-produced extracellular stimuli modulate the Pseudomonas aeruginosa swarming motility behaviour. Environ Microbiol 9:2622–2630

    PubMed  CAS  Google Scholar 

  • Tripathy SS, Raichur AM (2008) Dispersibility of barium titanate suspension in the presence of polyelectrolytes: a review. J Dispersion Sci Technol 29:230–239

    CAS  Google Scholar 

  • Trummler K, Effenberger F, Syldatk C (2003) An integrated microbial/enzymatic process for production of rhamnolipids and L-(+)-rhamnose from rapeseed oil with Pseudomonas sp DSM 2874. Eur J Lipid Sci Technol 105:563–571

    CAS  Google Scholar 

  • Tuleva BK, Ivanov GR, Christova NE (2002) Biosurfactant production by a new Pseudomonas putida strain. Z Naturforsch C 57:356–360

    PubMed  CAS  Google Scholar 

  • Van Alst NE, Picardo KF, Iglewski BH, Haidaris CG (2007) Nitrate sensing and metabolism modulate motility, biofilm formation, and virulence in Pseudomonas aeruginosa. Infect Immun 75:3780–3790

    PubMed  Google Scholar 

  • Van Dyke MI, Couture P, Brauer M, Lee H, Trevors JT (1993) Pseudomonas aeruginosa UG2 rhamnolipid biosurfactants: structural characterization and their use in removing hydrophobic compounds from soil. Can J Microbiol 39:1071–1078

    PubMed  Google Scholar 

  • Van Gennip M, Christensen LD, Alhede M, Phipps R, Jensen PO, Christophersen L, Pamp SJ, Moser C, Mikkelsen PJ, Koh AY, Tolker-Nielsen T, Pier GB, Hoiby N, Givskov M, Bjarnsholt T (2009) Inactivation of the rhlA gene in Pseudomonas aeruginosa prevents rhamnolipid production, disabling the protection against polymorphonuclear leukocytes. APMIS 117:537–546

    PubMed  Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2006) Physiological aspects – Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol Adv 24:604–620

    PubMed  Google Scholar 

  • Vasileva-Tonkova E, Gesheva V (2005) Glycolipids produced by Antarctic Nocardioides sp during growth on n-paraffin. Process Biochem 40:2387–2391

    CAS  Google Scholar 

  • Vasileva-Tonkova E, Gesheva V (2007) Biosurfactant production by antarctic facultative anaerobe Pantoea sp during growth on hydrocarbons. Curr Microbiol 54:136–141

    PubMed  CAS  Google Scholar 

  • Venkata Ramana K, Karanth NG (1989) Factors affecting biosurfactant production using Pseudomonas aeruginosa CFTR-6 under submerged conditions. J Chem Technol Biotechnol 45:249–257

    Google Scholar 

  • Wagner VE, Bushnell D, Passador L, Brooks AI, Iglewski BH (2003) Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol 185:2080–2095

    PubMed  CAS  Google Scholar 

  • Walas SM (1997) Chemical reactors. In: Perry RH, Green DW (eds) Perry’s chemical engineers’ handbook. McGraw-Hill, New York, pp 23/21–23/61

    Google Scholar 

  • Walter V, Syldatk C, Hausmann R (2010) Microbial production of rhamnolipid biosurfactants. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  • Wang XL, Gong LY, Liang SK, Han XR, Zhu CJ, Li YB (2005) Algicidal activity of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa. Harmful Algae 4:433–443

    CAS  Google Scholar 

  • Wang QH, Fang XD, Bai BJ, Liang XL, Shuler PJ, Goddard WA, Tang YC (2007) Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery. Biotechnol Bioeng 98:842–853

    PubMed  CAS  Google Scholar 

  • White SW, Zheng J, Zhang Y-M, Rock CO (2005) The structural biology of type II fatty acid biosynthesis. Annu Rev Biochem 74:791–831

    PubMed  CAS  Google Scholar 

  • Williams P, Cámara M (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12:182–191

    PubMed  CAS  Google Scholar 

  • Wu JY, Yeh KL, Lu WB, Lin CL, Chang JS (2008) Rhamnolipid production with indigenous Pseudomonas aeruginosa EM1 isolated from oil-contaminated site. Bioresour Technol 99:1157–1164

    PubMed  CAS  Google Scholar 

  • Xiao G, Déziel E, He J, Lépine F, Lesic B, Castonguay MH, Milot S, Tampakaki AP, Stachel SE, Rahme LG (2006) MvfR, a key Pseudomonas aeruginosa pathogenicity LTTR-class regulatory protein, has dual ligands. Mol Microbiol 62:1689–1699

    PubMed  CAS  Google Scholar 

  • Xie YW, Ye RQ, Liu HL (2006) Synthesis of silver nanoparticles in reverse micelles stabilized by natural biosurfactant. Colloids Surf A Physicochem Eng Asp 279:175–178

    CAS  Google Scholar 

  • Xie YW, Ye RQ, Liu HL (2007) Microstructure studies on biosurfactant-rhamnolipid/n-butanol/water/n-heptane microemulsion system. Colloids Surf A Physicochem Eng Asp 292:189–195

    CAS  Google Scholar 

  • Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T, Arakawa M (1992) Proposal of Burkholderia Gen-Nov and transfer of 7 species of the genus Pseudomonas homology group-II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) Comb-Nov. Microbiol Immunol 36:1251–1275

    PubMed  CAS  Google Scholar 

  • Yamaguchi M, Sato M, Yamada K (1976) Microbial production of sugar lipids. Chem Ind 17:741–742

    Google Scholar 

  • Yilmaz ES, Sidal U (2005) Investigation of antimicrobial effects of a Pseudomonas-originated biosurfactant. Biologia 60:723–725

    CAS  Google Scholar 

  • Yoo DS, Lee BS, Kim EK (2005) Characteristics of microbial biosurfactant as an antifungal agent against plant pathogenic fungus. J Microbiol Biotechnol 15:1164–1169

    CAS  Google Scholar 

  • York JD, Firoozabadi A (2008) Comparing effectiveness of rhamnolipid biosurfactant with a quaternary ammonium salt surfactant for hydrate anti-agglomeration. J Phys Chem B 112:845–851

    PubMed  CAS  Google Scholar 

  • Yuan XZ, Ren FY, Zeng GM, Zhong H, Fu HY, Liu J, Xu XM (2007) Adsorption of surfactants on a Pseudomonas aeruginosa strain and the effect on cell surface lypohydrophilic property. Appl Microbiol Biotechnol 76:1189–1198

    PubMed  CAS  Google Scholar 

  • Zhang YM, Miller RM (1992) Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl Environ Microbiol 58:3276–3282

    PubMed  CAS  Google Scholar 

  • Zhong H, Zeng GM, Yuan XZ, Fu HY, Huang GH, Ren FY (2007) Adsorption of dirhamnolipid on four microorganisms and the effect on cell surface hydrophobicity. Appl Microbiol Biotechnol 77:447–455

    PubMed  CAS  Google Scholar 

  • Zhong H, Zeng GM, Liu JX, Xu XM, Yuan XZ, Fu HY, Huang GH, Liu ZF, Ding Y (2008) Adsorption of monorhamnolipid and dirhamnolipid on two Pseudomonas aeruginosa strains and the effect on cell surface hydrophobicity. Appl Microbiol Biotechnol 79:671–677

    PubMed  CAS  Google Scholar 

  • Zhu K, Rock CO (2008) RhlA converts β-hydroxyacyl-acyl carrier protein intermediates in fatty acid synthesis to the β-hydroxydecanoyl-β-hydroxydecanoate component of rhamnolipids in Pseudomonas aeruginosa. J Bacteriol 190:3147–3154

    PubMed  CAS  Google Scholar 

  • Zhu L, Lin J, Ma J, Cronan JE, Wang H (2009) The triclosan resistance of Pseudomonas aeruginosa PA01 is due to FabV, a triclosan-resistant enoyl-acyl carrier protein reductase. Antimicrob Agents Chemother doi: AAC.01152-01109

    Google Scholar 

  • Zwietering MH, Jongenburger I, Rombouts FM, Van’t Riet K (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56:1875–1881

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Abdel-Mawgoud, A.M., Hausmann, R., Lépine, F., Müller, M.M., Déziel, E. (2011). Rhamnolipids: Detection, Analysis, Biosynthesis, Genetic Regulation, and Bioengineering of Production. In: Soberón-Chávez, G. (eds) Biosurfactants. Microbiology Monographs, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14490-5_2

Download citation

Publish with us

Policies and ethics