Skip to main content

An Augmented Reality Nanomanipulator for Learning Nanophysics: The “NanoLearner” Platform

  • Chapter
Transactions on Edutainment IV

Part of the book series: Lecture Notes in Computer Science ((TEDUTAIN,volume 6250))

Abstract

The work focuses on the description and evaluation of an augmented reality nanomanipulator, called “NanoLearner” platform used as educational tool in practical works of nanophysics. Through virtual reality associated to multisensory renderings, students are immersed in the nanoworld where they can interact in real time with a sample surface or an object, using their senses as hearing, seeing and touching. The role of each sensorial rendering in the understanding and control of the "approach-retract" interaction has been determined thanks to statistical studies obtained during the practical works. Finally, we present two extensions of the use of this innovative tool for investigating nano effects in living organisms and for allowing grand public to have access to a natural understanding of nanophenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bhusban, B.: Handbook of Nanotechnology. Springer, Heidelberg (2004)

    Book  Google Scholar 

  2. Tourney, C.: Cubism at Nanoscale. Nature Nanotechnology 2, 587–589 (2007)

    Article  Google Scholar 

  3. Israelachvili, J.: Molecular and surface forces, 2nd edn. Academic Press, NewYork (1991)

    Google Scholar 

  4. Yair, Y., Mintz, R., Litvak, S.: 3D virtual reality in science education: an implication for Astronomy Teaching. Journal of Computers in Mathematics and Science Teaching 20, 293–305 (2001)

    Google Scholar 

  5. Sankaranarayanan, G., Weghorst, S., Sanner, M., Gillet, A., Olson, A.: Role of haptics in teaching structural molecular biology. In: Proc. of the 11th Symposium on Haptics Interfaces for Virtual Environments and Teleoperator Systems, Los Angeles, CA, pp. 363–366 (2003)

    Google Scholar 

  6. Trindade, J., Fiolhais, C., Gil, V., Teixera, J.C.: Virtual Environment of water molecules for learning and teaching science. In: Proc. of the Eurographics Workshop, GVE 1999-Computer Graphics and Visualization Education 1999, Portugal, pp. 153–157 (1999)

    Google Scholar 

  7. Sauer, C., Hastings, W.A., Okamura, A.M.: Virtual Environment for Exploring Atomic Bonding. In: Proc. of EuroHaptics 2004, Munich, pp. 232–239 (2004)

    Google Scholar 

  8. Jones, M.G., Bokinsky, A., Andre, T., et al.: NanoManipulator applications in education: The impact of haptic experiences on students’ attitudes and concepts. In: Proceedings of the IEEE Computer Science Haptics 2002 Symposium, pp. 295–298. IEEE Computer Society, Orlando (2002)

    Google Scholar 

  9. Sonnenwald, D.H., Li, B.: Scientific collaboratories in higher education: exploring learning style preferences and perceptions of technology. British Journal of Education Technology 34, 419–431 (2003)

    Article  Google Scholar 

  10. Jeschke, S., Thomsen, C., Sinha, U.: Collaborative working environment for virtual and remote experiments in nanoscience and nanotechnologies. In: Proceedings of World Conference on E-Learning in Corporate, Government, Healthcare and Higher Education, pp. 2055–2060 (2006)

    Google Scholar 

  11. Taylor, R.M., Robinett, V., Chi, L., et al.: The Nanomanipulator: A Virtual-Reality Interface for a Scanning Tunneling Microscope. In: Proc. SIGGRAPH 1993, Computer Graphics, Anaheim, CA, pp. 127–134 (1993)

    Google Scholar 

  12. Vogl, W., Sitti, M., Ehrenstrasser, M., Zäh, M.: Augmented Reality User Interface for Nanomanipulation using Atomic Force Microscopes. In: Proc. of Eurohaptics 2004, Munich, Germany, pp. 413–416 (2004)

    Google Scholar 

  13. Li, G., Xi, N., Yu, M., Fung, W.K.: Development of augmented reality system for AFM-based nanomanipulation. IEEE/ASME Trans. on Mechatron. 9, 358–365 (2004)

    Article  Google Scholar 

  14. Ferreira, A., Mavroidis, C.: Virtual reality and Haptics for Nanorobotics. IEEE Robotics&Automation Magazine, 78–92 (2006)

    Google Scholar 

  15. Dong, L., Nelson, J.B.: Robotics in the Small. IEEE Robotics&Automation Magazine, 111–121 (2007)

    Google Scholar 

  16. Murphy, W.L., Spalding, G.C.: Range of interactions, an experiment in atomic and magnetic force microscopy. Am. J. Phys. 67(10), 905–908 (1999)

    Article  Google Scholar 

  17. Ringlein, J., Robbins, M.O.: Understanding and illustrating the atomic origins of friction. Am. J. Phys. 72(7), 884–891 (2004)

    Article  Google Scholar 

  18. Planinsic, G., Kovac: When nano goes to school. J. Physics Education 43, 37–45 (2008)

    Article  Google Scholar 

  19. Florens, J.L., Luciani, A., Cadoz, C., Castagné, N.: ERGOS: Multi-degrees of Freedom and Versatile Force-Feedback Panoply. In: Proc. of EuroHaptics 2004, Munich, Germany, June 5-7, pp. 356–360 (2004)

    Google Scholar 

  20. Capella, B., Dietler, G.: Force-distance curves by atomic force microscopy. Surface Science Reports 34, 1–104 (1999)

    Article  Google Scholar 

  21. Marliere, S.: Multisensorial interaction with a nanoscale phenomenon: the force curve. In: Proc. of Euro-Haptics 2004, pp. 246–252 (2004)

    Google Scholar 

  22. Ottino, J.M.: Is picture worth 1,000 words? Nature 421, 474–476 (2003)

    Article  Google Scholar 

  23. Wang, D., Zhang, Y., Sun, Z.: Multi-modal Virtual Reality Dental Training System with Integrated Haptic-Visual-Audio Display. In: Robotic Welding, Intelligence and Automation. Lecture Notes in Control and Information Sciences, vol. 362, pp. 453–462. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  24. Stark, R.W., Drobek, T., Heckl, W.M.: Thermomechanical noise of a free v-shaped cantile-ver for atomic-force microscopy. Ultramicroscopy 86, 207–215 (2001)

    Article  Google Scholar 

  25. Williams, R.L., He, X., Franklin, T., Wang, S.: Haptics-Augmented Undergraduate Engineering Education. In: International Conference on Engineering Education (2004)

    Google Scholar 

  26. Maboulian, R.: Surface processes in MEMS technology. Surface Science Reports 60, 209–268 (1998)

    Google Scholar 

  27. Marlière, S., Florens, J.L., Marchi, F., et al.: Implementation of perception and action at nanoscale. In: Proceedings of the 4th International Conference on Enactive Interfaces, pp. 181–184 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marchi, F., Marliere, S., Florens, J.L., Luciani, A., Chevrier, J. (2010). An Augmented Reality Nanomanipulator for Learning Nanophysics: The “NanoLearner” Platform. In: Pan, Z., Cheok, A.D., Müller, W., Zhang, X., Wong, K. (eds) Transactions on Edutainment IV. Lecture Notes in Computer Science, vol 6250. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14484-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14484-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14483-7

  • Online ISBN: 978-3-642-14484-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics