Skip to main content

Part of the book series: Nonlinear Physical Science ((NPS))

  • 363 Accesses

Abstract

The basic to all ideas how gravity might interact with neuronal tissue is the cellular membrane being intrinsic part of any cells. It is known to be, with all its components and interactions, involved in all sensory processes. Ion-channels as integral membrane proteins are involved significantly in these mechanisms, and according to the question of gravity sensitivity they are of high interest based on two possible aspects. First, it might be possible that gravity directly interacts with single membrane based on proteins, including ion-channels; second, gravity might change its parameters instead of interacting with the thermodynamical system membrane, and thus affect the properties of ion-channels incorporated in the membrane indirectly. Changing physical parameters other than gravity in a variety of different experiments, for example temperature or pressure, has shown both mechanisms to be possible using a variety of techniques. Especially the investigation of mechano-sensitive ion-channels has contributed a lot to the understanding of how membranes can interact with mechanical and other weak external forces (i.e. Garcia-Anoveras and Corey, 1997; Sukharev, 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Axon Inc., 1993, The Axon Guide for Electrophysiology and Biophysics Laboratory Techniques, Axon Instruments Inc.

    Google Scholar 

  • Boheim G., 1974, Statistical analysis of alamethicin channels in black lipid membranes, J. Membr. Biol., 19, 277–303.

    Article  Google Scholar 

  • Boheim G., Hanke W. and Jung G., 1983, Alamethicin pore formation, voltage dependent flip-flop of alpha-helix dipoles, Biophys. Struct. Mech., 9, 188–197.

    Article  Google Scholar 

  • Edwards K.L. and J.K. Eward., 1988, Phycomyces as an organism for the study of membrane ion-channels in gravity perception, Amer. Soc. Gravitational Space Bio. Bulletin, 2, 60.

    Google Scholar 

  • Goldermann M. and Hanke W., 2001, Ion-channels are sensitive to gravity changes, J. Microgravity Sci.Technol., XIII/1, 35–38.

    Article  Google Scholar 

  • Gordon L.G.M. and Haydon D.A., 1972, The unit conductance channel of alamethicin, Biochim. Biophys. Acta, 255, 1014–1018.

    Article  Google Scholar 

  • Hamill O.P., Marty A., Neher E., Sakmann B. and Sigworth F.J., 1981, Improved patch-clamp technique for high-resolution current recording from cells and cell-free membrane patches, Pflügers Arch., 391, 85–100.

    Article  Google Scholar 

  • Häder D.P., 1999, Gravitaxis in unicellular microorganisms, Adv. Space Res., 24, 851–860

    Article  ADS  Google Scholar 

  • Hamill O.P., Marty A., Neher E., Sackmann B. and Sigworth F.J., 1981, Improved patch-clamp-technique for high-resolution recording from cells and cell-free membrane patches, Pflügers Arch., 391, 85–100.

    Article  Google Scholar 

  • Hanke W., 1985, Reconstitution of ion-channels, CRC, Crit. Rev. Biochem., 19, 1–44.

    Article  Google Scholar 

  • Hanke W. and Hanke R., 1997, Methoden der Membranphysiologie, Spektrum Verlag der, Wissenschaften, Heidelberg.

    Google Scholar 

  • Hanke W. and Schlue W.-R.,1993, Planar Lipid Bilayer Experiments: Techniques and Applictaion, Academic Press, Oxford.

    Google Scholar 

  • Hanke W., 1995, Studies of the interaction of gravity with biological membranes using alamethicin doped planar lipid bilayers as a model system, Adv. Space Res., 6/7, 143–150.

    Google Scholar 

  • Klinke N., Goldermann M., Rahmann H. and Hanke W., 1998, The bilayer block module: A system for automated measurement and remote controlled measurements of ion current fluctuations, Space Forum, 2, 203–212.

    Google Scholar 

  • Klinke N., Goldermann, M. and Hanke, W., 1999, Planar lipid bilayers doped with alamethiin as a sensor for gravity. III Workshop on Cybernetic Vision. da Fontoura et al., eds., ICS-USP, Brazil, 25–30.

    Google Scholar 

  • Klinke N., Goldermann M. and Hanke W., 2000, The properties of alamethicin incorporated into planar lipid bilayers under the influence of microgravity, Acta Astronautica, 47, 771–773.

    Article  ADS  Google Scholar 

  • Machemer H., 1997, Unicellular responses to gravity transitions, Space Forum, 3, 3–44.

    Google Scholar 

  • Meissner K. and Hanke W., 2002, Patch-clamp experiments under microgravity, J. Gravitational Physiol., 9, 377–378.

    Google Scholar 

  • Meissner K. and Hanke W., 2005, Action potential properties are gravity dependent, Microgravity sci. technol., XVI, 3–8.

    Google Scholar 

  • Mitiku G. and K.L. Edwards., 1991, Ion-channels of membrane vesicles from gravity-sensitive sporangiophores of Phycomyces, Amer. Soc. Gravitational Space Bio. Bulletin, 5, 47.

    Google Scholar 

  • Miller C., 1993, Ion Channel Reconstitution, Plenum Press, New York.

    Google Scholar 

  • Mueller P., Rudin D. O., TiTien H.T. and Wescott W.L., 1962, Reconstitution of cell membrane structure in vitro and its transformation into an excitable system, Nature, 194, 979–980.

    Article  ADS  Google Scholar 

  • Richter P., Lebert M., Tahedl H. and Häder D.-P., 2001, Calcium is involved in the gravitactic orientation in colorless flagellates, J. Plant Phys, 158, 689–697.

    Article  Google Scholar 

  • Sakmann B. and Neher E., 1983, Single Channel Recording, Plenum Press, New York.

    Google Scholar 

  • Schatz A., Linke-Hommes A. and Neubert J., 1990, Gravity dependency of the gramicidin: A channel conductivity, Europ. Biophys. J., 25, 37–41.

    Article  Google Scholar 

  • Wiedemann M., Rahmann H. and Hanke W., 2003, Gravitational impact on ion-channels incorporated into planar lipid bilayers, In: Planar lipid bilayers and their applications, TiTien and Ottova, 2003, eds., Elsevier Sciences, 669–698.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wiedemann, M., Kohn, F.P.M., Roesner, H., Hanke, W.R.L. (2011). Interaction of Gravity with Molecules and Membranes. In: Self-organization and Pattern-formation in Neuronal Systems Under Conditions of Variable Gravity. Nonlinear Physical Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14472-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14472-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14471-4

  • Online ISBN: 978-3-642-14472-1

Publish with us

Policies and ethics