Skip to main content

Part of the book series: Nonlinear Physical Science ((NPS))

  • 356 Accesses

Abstract

In this study we could clearly show that microgravity and hyper gravity respectively lead to a neuromodulation in the cerebral cortex of humans. This implies different excitability of the neuronal networks and different arousal states of the subjects that might involve different states of attention and focus and therefore different mental and motor performance skills. Unfortunately the brain is characterized by all properties of complex system and therefore the processes at every level are chaotic, unstable and non-linear and unpredictable. Especially in our results with the slow cortical potentials this is expressed in the reaction of the brain to the altered gravity stimuli, where the polarity of the DC shifts to depend on each individual brain of the different subjects. Concerning the ambitions that brain machine interfaces are prospected for space system control, further research is essential about how the brain is influenced by microgravity conditions. Furthermore this study as a logical continuation of the above chapters shows that the fragmentation of complex systems in sub-systems that is conventionally used in biological research is very useful for the clarification of the underlying mechanisms but should always be verified in the whole system at best under the same experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arns M., de Ridder S., Strehl U., Breteler M. and Coenen A., 2009, Efficacy of neurofeedback treatment in ADHD: the effects on inattention, impulsivity and hyperactivity: a meta-analysis, Journal of Clinical EEG & Neuroscience, July, 180–189.

    Google Scholar 

  • Beckers F., Seps B., Ramaekers D. and Verheyden B., 2003, Parasympathetic heart rate modulation during parabolic flights, Eu. J. App l. Physiol., 90, 83–91.

    Article  Google Scholar 

  • Cheron G., Leroy A., Saedeleer D.E., Bengoetxea A., Lipshits M., Cebolla A., Servais L., Dan B., Berthoz A. and McIntyre J., 2006, Effect of gravity on human spontaneous 10-Hz electro-encephalographic oscillations during the arrest reaction, Brain Res., 1121, 105–116.

    Article  Google Scholar 

  • Elbert T., 1993, Slow Cortical Potentials reflect the regulation of cortical excitability, In: McCallum W.C. and Curry S.H. (Eds.), Slow Potential Changes in the Human Brain, Plenum Press, New York, 235–255.

    Google Scholar 

  • Graille C., Shlyck G., Buser P., Kozlovskaia I. and Rouguel-Buser A., 1998, In-flight electrocorticograms Compared to ground controls in behaving monkeys: difference in attentional states, Brain Research Reviews, 28, 52–60.

    Article  Google Scholar 

  • Heinrich H., Gevensleben H., Freisleder F.J., Moll G.H. and Rothenberger A., 2004, Training of Slow Cortical Potentials in Attention-Deficit/Hyperactivity Disorder: Evidence for Positive Behavioral and Neurophysiological Effects, Biol. Psychiatry, 55, 772–775.

    Article  Google Scholar 

  • Lipnicki D.M., 2009, Baroreceptor acitivity potentially facilitates cortical inhibition in zero g, Neuroimage, 46, 10–11.

    Article  Google Scholar 

  • Lujan B.F. and White R.J., 1995, Human Physiology in Space, National Aeronautics and Space Administration Headquarters.

    Google Scholar 

  • Menon C., de Negueruela C., Millán J., Tonet O., Carpi F, Broschart M., Ferrez P., Buttfield A., Tecchio F., Sepulveda F., Citi L., Laschi C., Tombini M., Dario P., Rossini P.M. and de Rossi D., 2009, Prospect of brain-machine interfaces for space system control, Acta Astronautica, 64, 448–456.

    Article  ADS  Google Scholar 

  • Meissner K. and Hanke W., 2005, Action potential properties are gravity dependent, Microgravity Science and Technology, XVII-2, 38–43

    Article  Google Scholar 

  • Rockstroh B., Elbert T., Canavan A., Lutzenberger W. and Birbaumer N., 1989, Slow Potentials and Behaviour, Urban und Schwarzenberg, München.

    Google Scholar 

  • Schneider S., Brümmer V., Mierau A., Carnahan H., Dubrowski A. and Strüder H., 2007, Increased brain cortical activity during parabolic flights has no influence on motor tracking task, Exp. Brain Res., 0014-4819 (Print) 1432-1106 (Online).

    Google Scholar 

  • Schneider S., Brümmer V., Carnahan H., Dubrowski A., Askew C.D. and Strüder H.K., 2008, What happens to the brain in weightlessness? A first approach by EEG tomography, Neuroimage, 42, 1316–1323.

    Article  Google Scholar 

  • Siniatchkin M,. Hierundar A., Kropp P., Kuhnert R., Gerber W.D. and Stephani U., 2000, Self-regulation of slow cortical potentials in children with migraine: an exploratory study, Appl. Psychophysiol Biofeedback, 25, 13–32.

    Article  Google Scholar 

  • Somjen G.G., Segal M.B. and Herreras O., 1991, Osmotic-hypertensive opening of the blood-brain barrier in rats does not necissarily provide acces for potassium to cerebral interstitial fluid, Exp. Physiol., 76, 507–514.

    Google Scholar 

  • Strehl U., Kotchoubey B., Trevorrow T. and Birbaumer N., 2005, Predictors of seizure reduction after self regulation of slow cortical potentials as a treatment of drug resistant epilepsy, Epilepsy and behavior, 6, 156–166.

    Article  Google Scholar 

  • Strehl U., Leins U., Goth G., Klinger C., Hinterberger T. and Birbaumer N., 2006, Self-regulation of slow cortical potentials—a new treatment for children with ADHD, Pediatrics, 118, 1530–1540.

    Article  Google Scholar 

  • Tan G., Thornby J., Hammond D.C., Strehl U, Canady B., Arnemann A. and Kaiser D.A., 2009, Meta-analysis of EEG biofeedback in treating epilepsy, Journal of Clinical EEG & Neuroscience, July, 173–179.

    Google Scholar 

  • Vanhatalo S., Tallgren P., Becker C., Holmes M.D., Miller J.W., Kaila K. and Voipio J., 2003, Scalp-recorded slow EEG responses generated in response to hemodynamic changes in the brain, Clinical Neurophysiology, 114, 1744–1754.

    Article  Google Scholar 

  • Weimer M. and Hanke W., 2005, Propagation velocity and triggering threshold of the retinal spreading depression are not correlated, Exp. Brain Research, 164, 185–193.

    Article  ADS  Google Scholar 

  • Vaitl D., Gruppe H., Stark R. and Pössel P., 1996, Simulated microgravity and cortical inhibition: a study of hemodynamic-brain interaction, Biological Psychology, 42, 87–103.

    Article  Google Scholar 

  • Verheyden B., Beckers F. and Aubert A.E., 2005, Spectral characteristics of herat rate fluctations during parabolic flights, Eur. J. Appl. Physiol., 95, 557–568.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wiedemann, M., Kohn, F.P.M., Roesner, H., Hanke, W.R.L. (2011). The Brain Itself in Zero-g . In: Self-organization and Pattern-formation in Neuronal Systems Under Conditions of Variable Gravity. Nonlinear Physical Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14472-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14472-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14471-4

  • Online ISBN: 978-3-642-14472-1

Publish with us

Policies and ethics