Skip to main content

Squares In Sumsets

  • Chapter

Part of the book series: Bolyai Society Mathematical Studies ((BSMS,volume 21))

Abstract

A finite set A of integers is square-sum-free if there is no subset of A sums up to a square. In 1986, Erdős posed the problem of determining the largest cardinality of a square-sum-free subset of 1,..., n. Answering this question, we show that this maximum cardinality is of order n1/3+0(1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Alon, Subset sums, Journal of Number Theory, 27 (1987), 196–205.

    Article  MATH  MathSciNet  Google Scholar 

  2. N. Alon and G. Freiman, On sums of subsets of a set of integers, Combinatorica, 8 (1988), 297–306.

    Article  MATH  MathSciNet  Google Scholar 

  3. Y. Bilu, Structure of sets with small sumset, Structure theory of set addition. Asterisque, 258 (1999), xi, 77-108.

    Google Scholar 

  4. M.C. Chang, Generalized arithmetical progressions and sumsets, Acta Math. Hungar., 65 (1994), no. 4, 379–388.

    Article  MathSciNet  Google Scholar 

  5. P. Erdős, Some problems and results on combinatorial number theory, Proc. 1st. China Conference in Combinatorics (1986).

    Google Scholar 

  6. G. Freiman, Foundations of a structural theory of set addition, translated from the Russian, Translations of Mathematical Monographs, Vol. 37. American Mathematical Society, Providence, R. I., 1973.

    Google Scholar 

  7. B. Green, An exposition on triples in Arithmetic progression, http://www.dpmms.cam.ac.uk/~bjg23/papers/bourgain-roth.pdf.

  8. H. Iwaniec and E. Kowalski, Analytic number theory, American Mathematical Society, Colloquium publications, Volume 53.

    Google Scholar 

  9. E. Lipkin, On representation of r-powers by subset sums, Acta Arithmetica, 52 (1989), 114–130.

    MathSciNet  Google Scholar 

  10. I. Ruzsa, An analogue of Freiman’s theorem in group, Structure theory of set addition. Asterisque, 258 (1999), 323–326.

    MathSciNet  Google Scholar 

  11. A. Sárközy, Finite addition theorems, II, Journal of Number Theory, 48 (1994), 197–218.

    Article  MATH  MathSciNet  Google Scholar 

  12. E. Szemerédi and V. H. Vu, Long arithmetic progressions in sumsets: Thresholds and Bounds, Journal of the A.M.S, 19 (2006), no. 1, 119–169.

    MATH  Google Scholar 

  13. T. Tao, Freiman’s theorem in solvable groups, http://arxiv.org/abs/0906.3535.

  14. T. Tao and V. H. Vu, Additive combinatorics, Cambridge University Press, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoi H. Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 János Bolyai Mathematical Society and Springer-Verlag

About this chapter

Cite this chapter

Nguyen, H.H., Vu, V.H. (2010). Squares In Sumsets. In: Bárány, I., Solymosi, J., Sági, G. (eds) An Irregular Mind. Bolyai Society Mathematical Studies, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14444-8_14

Download citation

Publish with us

Policies and ethics