Skip to main content

Multi-Agent Technology for Fault Tolerant and Flexible Control

  • Chapter
Innovations in Multi-Agent Systems and Applications - 1

Part of the book series: Studies in Computational Intelligence ((SCI,volume 310))

summary

One of the main characteristics of multi-agent systems (MAS) is fault tolerance. When an agent is unavailable for some reason, another agent with similar capabilities can theoretically compensate for this loss. Many key aspects of fault tolerance in MAS are described in this chapter including social knowledge, physical distribution, agent development, and validation. Therefore, the focus is not only on a fault tolerant agent platform with necessary services (e.g., fault tolerant social knowledge), but also on the design that can significantly reduce mistakes in agent programming and validation that can discover faults that manifest as failures during the testing phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AgentLink III, http://www.agentlink.org/

  2. AGlobe, Agent Technology Center, Czech Technical university, http://agents.felk.cvut.cz/aglobe/

  3. Aguilera, M.K., Chen, W., Toueg, S.: Heartbeat: A Timeout-free Failure Detector for Quiescent Reliable Communication. In: Mavronicolas, M. (ed.) WDAG 1997. LNCS, vol. 1320, pp. 126–140. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  4. Byrne, C., Edwards, P.: Refinement in Agent Groups. In: Weiss, G., Sen, S. (eds.) IJCAI-WS 1995. LNCS, vol. 1042, pp. 22–39. Springer, Heidelberg (1996)

    Google Scholar 

  5. Chen, L., Avizienis, A.: N-version Programming: A Fault-Tolerance Approach to Reliability of Software Operation. In: Digest of Papers of the 8th Annual International Conference on Fault-Tolerant Computing, Toulouse, France (1978)

    Google Scholar 

  6. Christian, F.: Understanding Fault-Tolerant Distributed Systems. Communications of the ACM 34, 56–78 (1993)

    Article  Google Scholar 

  7. CIP: Common Industrial Protocol, http://www.ab.com/networks/cip_pop.html

  8. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173. Springer, New York (2000)

    Google Scholar 

  9. Dragoni, N., Gaspari, M.: Crash failure detection in asynchronous agent communication languages. Autonomous Agents and Multi-Agent Systems 13(3), 355–390 (2006)

    Article  Google Scholar 

  10. Durfee, E.H.: Distributed problem solving and planning. In: A Modern Approach to Distributed Artificial Intelligence, ch. 3, The MIT Press, San Francisco (1999)

    Google Scholar 

  11. Fedoruk, A., Deters, R.: Improving fault-tolerance by replicating agents. In: Proceedings of the first international joint conference on Autonomous agents and multiagent systems: part 2, Session 8B, scalability and robustness, pp. 737–744. ACM, New York (2002)

    Chapter  Google Scholar 

  12. FIPA: The Foundation for Intelligent Physical Agents Geneva, Switzerland (1997), http://www.fipa.org

  13. Giorgini, P., Kolp, M., Mylopoulos, J.: Multi-Agent Architectures as Organizational Structures. Autonomous Agents and Multi-Agent Systems 13(1), 3–25 (2006)

    Article  Google Scholar 

  14. Havel, I.M.: Artificial Intelligence and Connectionism: Some Philosophical Implications. In: Trappl, R., Mařík, V., Štěpánková, O. (eds.) Advanced Topics in Artificial Intelligence. LNCS, vol. 617, pp. 25–41. Springer, Heidelberg (1992)

    Google Scholar 

  15. Hägg, S.: A Sentinel Approach to Fault Handling in Multi-Agent Systems. In: Foo, N.Y., Göbel, R. (eds.) PRICAI 1996. LNCS, vol. 1114, pp. 181–195. Springer, Heidelberg (1996)

    Google Scholar 

  16. Hayden, S., Carrick, C., Yang, Q.: Architectural Design Patterns for Multiagent Coordination. In: Proceedings of the 3rd International Conference on Autonomous Agents, Agents 1999, Seattle, USA, pp. 10–21 (1999)

    Google Scholar 

  17. IEC (International Electrotechnical Commission), TC65/WG6, 61131-3, 2nd ed., Programmable Controllers - Programming Languages, April 16 (2001)

    Google Scholar 

  18. JACK, Agent Oriented Software, http://www.agent-software.com.au/products/jack/

  19. JADE: Java Agent DEvelopment Framework, Telecom Italia Lab, Torino, Italy, http://sharon.cselt.it/projects/jade/

  20. Kalbarczyk, Z.T., Iyer, R.K., Bagchi, S., Whisnant, K.: Chameleon: A Software Infrastructure for Adaptive Fault Tolerance. IEEE Transactions on Parallel and Distributed Systems 10, 560–579 (1999)

    Article  Google Scholar 

  21. Kaminka, G.A., Tambe, M.: What’s Wrong With Us? Improving Robustness through Social Diagnosis. In: Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-1998), Madison, Wisconsin, pp. 26–30 (1998)

    Google Scholar 

  22. Kit, E.: Software Testing in the Real World: Improving the Process. Addison-Wesley, Reading (1995); ISBN 0-201-87756-2

    Google Scholar 

  23. Kumar, S., Cohen, P.R., Levesque, H.J.: The Adaptive Agent Architecture: Achieving Fault-Tolerance Using Persistent Broker Teams. In: Proceedings of the 4th International Conference on Multi-agent Systems (ICMAS-2000), Boston, MA, pp. 159–166 (2000)

    Google Scholar 

  24. Kumar, S., Cohen, P.R.: Towards a Fault-Tolerant Multi-Agent System Architecture. In: Proceedings of the 4th International Conference on Autonomous Agents, Barcelona, Spain, pp. 459–466 (2000)

    Google Scholar 

  25. Marin, O.: The DARX framework: Adapting Fault Tolerance for Agent Systems. Ph. D. Thesis, Université du Havre (2003)

    Google Scholar 

  26. Mařík, V., Pěchouček, M., Štěpánková, O.: Social Knowledge in Multi-Agent Systems. In: Luck, M., Mařík, V., Štěpánková, O., Trappl, R. (eds.) ACAI 2001 and EASSS 2001. LNCS (LNAI), vol. 2086, pp. 211–245. Springer, Heidelberg (2001)

    Google Scholar 

  27. Maturana, F.P., Staron, R.J., Tichý, P., Šlechta, P., Vrba, P.: A Strategy to Implement and Validate Industrial Applications of Holonic Systems. In: Mařík, V., William Brennan, R., Pěchouček, M. (eds.) HoloMAS 2005. LNCS (LNAI), vol. 3593, pp. 111–120. Springer, Heidelberg (2005)

    Google Scholar 

  28. Maturana, F.P., Tichý, P., Šlechta, P., Staron, R.J., Discenzo, F.M., Hall, K.H., Mařík, V.: Cost-Based Dynamic Reconfiguration System for Intelligent Agent Negotiation. In: Proceedings of IEEE/WIC International Conference on Intelligent Agent Technology (IAT), pp. 629–632. IEEE Computer Society Press, Los Alamitos (2003); ISBN 0-7695-1931-8

    Google Scholar 

  29. Minski, Y., Renesse, R., Schneider, F., Stoller, S.: Cryptographic Support for Fault-Tolerant Distributed Computing. In: Proceedings of the 7th ACM SIGOPS European Workshop, Connemara, Ireland, pp. 109–114 (1996)

    Google Scholar 

  30. Nimis, J., Lockemann, P.C.: Robust Multi-Agent Systems: The Transactional Conversation Approach. In: The 1st International Workshop on Safety and Security in Multiagent Systems (SASEMAS 2004), New York City, NY (2004)

    Google Scholar 

  31. Obitko, M., Mařík, V.: Integration of Multi-Agent Systems: Architectural Considerations. In: The 11th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2006), Prague, pp. 1145–1148 (2006)

    Google Scholar 

  32. Pěchouček, M., Mařík, V., Štěpánková, O.: Role of Acquaintance Models in Agent-Based Production Planning System. In: Klusch, M., Kerschberg, L. (eds.) CIA 2000. LNCS (LNAI), vol. 1860, pp. 179–190. Springer, Heidelberg (2000)

    Google Scholar 

  33. Pechoucek, M., Marik, V.: Industrial Deployment of Multi-Agent Technologies: Review and Selected Case Studies. International Journal on Autonomous Agents and Multi-Agent Systems, 1387–2532 (2008)

    Google Scholar 

  34. Pěchouček, M., Macůrek, F., Tichý, P., Štěpánková, O., Mařík, V.: Meta-agent: A Workflow Mediator in Multi-Agent Systems. In: Watson, I., Gordon, J., McIntosh, A. (eds.) Intelligent Workflow and Process Management: The New Frontier for AI in Business IJCAI-1999, pp. 110–116. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  35. Pleisch, S., Schiper, A.: Approaches to fault-tolerant and transactional mobile agent execution - an algorithmic view. ACM Computing Surveys (CSUR) 36(3), 219–262 (2004)

    Article  Google Scholar 

  36. Shen, W., Lang, S.Y.T., Lang, L.: iShopFloor: An Internet-Enabled Agent-Based Intelligent Shop Floor. IEEE Transactions on System, Man, and Cybernetics, Part C 35(3), 371–381 (2005)

    Article  Google Scholar 

  37. Sheory, O.M.: A Scalable Agent Location Mechanism. In: Wooldridge, M., Lesperance, Y. (eds.) ATAL 1999. LNCS, vol. 1757, pp. 162–173. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  38. Sheory, O.M., Sycara, K., Jha, S.: Multi-Agent Coordination through Coalition Formation. In: Rao, A., Singh, M.P., Wooldridge, M.J. (eds.) ATAL 1997. LNCS, vol. 1365, pp. 143–154. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  39. Singh, N.: A Common Lisp API and Facilitator for ABSI. Technical Report Logic-93-4, Computer Science Department, Stanford University (1994)

    Google Scholar 

  40. Tichý, P.: Middle-agents Organized in Fault Tolerant and Fixed Scalable Structure. Computing and Informatics 22, 597–622 (2003)

    MATH  Google Scholar 

  41. Tichý, P., Šlechta, P., Maturana, F.P., Balasubramanian, S.: Industrial MAS for Planning and Control. In: Mařík, V., Štěpánková, O., Krautwurmová, H., Luck, M. (eds.) ACAI 2001, EASSS 2001, AEMAS 2001, and HoloMAS 2001. LNCS (LNAI), vol. 2322, pp. 280–295. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  42. Tichý, P.: Fault Tolerant and Fixed Scalable Structure of Middle-Agents. In: Dix, J., Leite, J. (eds.) CLIMA 2004. LNCS (LNAI), vol. 3259, pp. 53–70. Springer, Heidelberg (2004); ISBN: 3-540-24010-1

    Chapter  Google Scholar 

  43. Tichý, P.: Social Knowledge in Multi-agent Systems. Dissertation thesis, Czech Technical University, Prague (2004)

    Google Scholar 

  44. Vrba, P., Mařík, V.: Simulation in Agent-based Manufacturing Control Systems. In: Proceedings of the IEEE International Conference on Systems, Men and Cybernetics, Hawaii, USA, pp. 1718–1723 (2005)

    Google Scholar 

  45. Wensley, J.H.: SIFT Software Implemented Fault Tolerance. In: Proceedings of Fall Joint Computer Conf., AFIPS, vol. 41, pp. 243–253 (1972)

    Google Scholar 

  46. Wooldridge, M.J., Jennings, N.R.: Intelligent Agents: Theory and Practice. The Knowledge Eng. Rev. 10(2), 115–152 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tichý, P., Staron, R.J. (2010). Multi-Agent Technology for Fault Tolerant and Flexible Control. In: Srinivasan, D., Jain, L.C. (eds) Innovations in Multi-Agent Systems and Applications - 1. Studies in Computational Intelligence, vol 310. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14435-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14435-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14434-9

  • Online ISBN: 978-3-642-14435-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics