Skip to main content

Formation and Function of White Pulp Lymphocyte Rich Areas of Spleen

  • Chapter
  • First Online:
Developmental Biology of Peripheral Lymphoid Organs

Abstract

The spleen is two organs in one: the red pulp where fixed tissue macrophages remove effete red blood cells and pathogens, and the white pulp areas within which adaptive lymphocyte-dependent immune responses evolve and are maintained. In this section, we review the signals and cells that regulate the development of the white pulp areas, and how this enables the development and maintenance of immune responses. We particularly emphasize the role of lymphoid tissue inducer cells in establishing and maintaining immune responses in the spleen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen CD, Okada T, Tang HL, Cyster JG (2007) Imaging of germinal center selection events during affinity maturation. Science 315:528–531

    Article  PubMed  CAS  Google Scholar 

  • Alon R, Ley K (2008) Cells on the run: shear-regulated integrin activation in leukocyte rolling and arrest on endothelial cells. Curr Opin Cell Biol 20:525–532

    Article  PubMed  CAS  Google Scholar 

  • Bajenoff M, Egen JG, Koo LY, Laugier JP, Brau F, Glaichenhaus N, Germain RN (2006) Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 25:989–1001

    Article  PubMed  CAS  Google Scholar 

  • Banchereau J, Bazan F, Blanchard D, Briere F, Galizzi JP, van Kooten C, Liu YJ, Rousset F, Saeland S (1994) The CD40 antigen and its ligand. Annu Rev Immunol 12:881–922

    Article  PubMed  CAS  Google Scholar 

  • Bekiaris V, Gaspal F, Kim MY, Withers DR, McConnell FM, Anderson G, Lane PJ (2009) CD30 is required for CCL21 expression and CD4 T cell recruitment in the absence of lymphotoxin signals. J Immunol 182:4771–4775

    Article  PubMed  CAS  Google Scholar 

  • Bekiaris V, Withers D, Glanville SH, McConnell FM, Parnell SM, Kim MY, Gaspal FM, Jenkinson E, Sweet C, Anderson G, Lane PJ (2007) Role of CD30 in B/T segregation in the spleen. J Immunol 179:7535–7543

    PubMed  CAS  Google Scholar 

  • Belnoue E, Pihlgren M, McGaha TL, Tougne C, Rochat AF, Bossen C, Schneider P, Huard B, Lambert PH, Siegrist CA (2008) APRIL is critical for plasmablast survival in the bone marrow and poorly expressed by early-life bone marrow stromal cells. Blood 111:2755–2764

    Article  PubMed  CAS  Google Scholar 

  • Benson MJ, Dillon SR, Castigli E, Geha RS, Xu S, Lam KP, Noelle RJ (2008) Cutting edge: the dependence of plasma cells and independence of memory B cells on BAFF and APRIL. J Immunol 180:3655–3659

    PubMed  CAS  Google Scholar 

  • Cinamon G, Matloubian M, Lesneski MJ, Xu Y, Low C, Lu T, Proia RL, Cyster JG (2004) Sphingosine 1-phosphate receptor 1 promotes B cell localization in the splenic marginal zone. Nat Immunol 5:713–720

    Article  PubMed  CAS  Google Scholar 

  • Cinamon G, Zachariah MA, Lam OM, Foss FW, Jr., Cyster JG (2008) Follicular shuttling of marginal zone B cells facilitates antigen transport. Nat Immunol 9:54–62

    Article  PubMed  CAS  Google Scholar 

  • Croft M (2003) Co-stimulatory members of the TNFR family: keys to effective T-cell immunity? Nat Rev Immunol 3:609–620

    Article  PubMed  CAS  Google Scholar 

  • Cyster JG (2003) Lymphoid organ development and cell migration. Immunol Rev 195:5–14

    Article  PubMed  CAS  Google Scholar 

  • Cyster JG, Hartley SB, Goodnow CC (1994) Competition for follicular niches excludes self-reactive cells from the recirculating B-cell repertoire. Nature 371:389–395

    Article  PubMed  CAS  Google Scholar 

  • Eberl G (2005) Opinion: Inducible lymphoid tissues in the adult gut: recapitulation of a fetal developmental pathway? Nat Rev Immunol 5:413–420

    Article  PubMed  CAS  Google Scholar 

  • Eberl G, Littman DR (2003) The role of the nuclear hormone receptor RORgammat in the development of lymph nodes and Peyer’s patches. Immunol Rev 195:81–90

    Article  PubMed  CAS  Google Scholar 

  • Eberl G, Littman DR (2004) Thymic origin of intestinal alphabeta T cells revealed by fate mapping of RORgammat+ cells. Science 305:248–251

    Article  PubMed  CAS  Google Scholar 

  • Eberl G, Marmon S, Sunshine MJ, Rennert PD, Choi Y, Littman DR (2004) An essential function for the nuclear receptor RORgamma(t) in the generation of fetal lymphoid tissue inducer cells. Nat Immunol 5:64–73

    Article  PubMed  CAS  Google Scholar 

  • Farr AG, Berry ML, Kim A, Nelson AJ, Welch MP, Aruffo A (1992) Characterization and cloning of a novel glycoprotein expressed by stromal cells in T-dependent areas of peripheral lymphoid tissues. J Exp Med 176:1477–1482

    Article  PubMed  CAS  Google Scholar 

  • Forster R, Davalos-Misslitz AC, Rot A (2008) CCR7 and its ligands: balancing immunity and tolerance. Nat Rev Immunol 8:362–371

    Article  PubMed  CAS  Google Scholar 

  • Forster R, Mattis AE, Kremmer E, Wolf E, Brem G, Lipp M (1996) A putative chemokine receptor, blr1, directs b-cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 87:1037–1047

    Article  PubMed  CAS  Google Scholar 

  • Fu YX, Chaplin DD (1999) Development and maturation of secondary lymphoid tissues. Annu Rev Immunol 17:399–433

    Article  PubMed  CAS  Google Scholar 

  • Fu YX, Huang G, Wang Y, Chaplin DD (1998) B lymphocytes induce the formation of follicular dendritic cell clusters in a lymphotoxin alpha-dependent fashion. J Exp Med 187:1009–1018

    Article  PubMed  CAS  Google Scholar 

  • Fu YX, Huang G, Wang Y, Chaplin DD (2000) Lymphotoxin-alpha-dependent spleen microenvironment supports the generation of memory B cells and is required for their subsequent antigen-induced activation. J Immunol 164:2508–2514

    PubMed  CAS  Google Scholar 

  • Fu YX, Molina H, Matsumoto M, Huang G, Min J, Chaplin DD (1997) Lymphotoxin-alpha (LTalpha) supports development of splenic follicular structure that is required for IgG responses. J Exp Med 185:2111–2120

    Article  PubMed  CAS  Google Scholar 

  • Gaspal F, Bekiaris V, Kim M, Withers D, Bobat S, MacLennan I, Anderson G, Lane PJ, Cunningham AF (2008) Critical synergy of CD30 and OX40 signals in CD4 T cell homeostasis and Th1 immunity to salmonella. J Immunol 180:2824–2829

    PubMed  CAS  Google Scholar 

  • Gaspal FM, Kim MY, McConnell FM, Raykundalia C, Bekiaris V, Lane PJ (2005) Mice deficient in OX40 and CD30 signals lack memory antibody responses because of deficient CD4 T cell memory. J Immunol 174:3891–3896

    PubMed  CAS  Google Scholar 

  • Glenney GW, Wiens GD (2007) Early diversification of the TNF superfamily in teleosts: genomic characterization and expression analysis. J Immunol 178:7955–7973

    PubMed  CAS  Google Scholar 

  • Gong YF, Xiang LX, Shao JZ (2009) CD154-CD40 interactions are essential for thymus-dependent antibody production in zebrafish: insights into the origin of costimulatory pathway in helper T cell-regulated adaptive immunity in early vertebrates. J Immunol 182:7749–7762

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez M, Mackay F, Browning JL, Kosco-Vilbois MH, Noelle RJ (1998) The sequential role of lymphotoxin and B cells in the development of splenic follicles. J Exp Med 187:997–1007

    Article  PubMed  CAS  Google Scholar 

  • Gowans JL (1959) The recirculation of lymphocytes from blood to lymph in the rat. J Physiol 146:54–69

    PubMed  CAS  Google Scholar 

  • Gray D, Kumararatne DS, Lortan J, Khan M, MacLennan IC (1984) Relation of intra-splenic migration of marginal zone B cells to antigen localization on follicular dendritic cells. Immunology 52:659–669

    PubMed  CAS  Google Scholar 

  • Grewal IS, Flavell RA (1996) A central role of cd40 ligand in the regulation of cd4(+) t-cell responses. Immunol Today 17:410–414

    Article  PubMed  CAS  Google Scholar 

  • Hebeis BJ, Klenovsek K, Rohwer P, Ritter U, Schneider A, Mach M, Winkler TH (2004) Activation of virus-specific memory B cells in the absence of T cell help. J Exp Med 199:593–602

    Article  PubMed  CAS  Google Scholar 

  • Hirose J, Kawashima H, Swope Willis M, Springer TA, Hasegawa H, Yoshie O, Miyasaka M (2002) Chondroitin sulfate B exerts its inhibitory effect on secondary lymphoid tissue chemokine (SLC) by binding to the C-terminus of SLC. Biochim Biophys Acta 1571:219–224

    PubMed  CAS  Google Scholar 

  • Ho F, Lortan JE, MacLennan IC, Khan M (1986) Distinct short-lived and long-lived antibody-producing cell populations. Eur J Immunol 16:1297–1301

    Article  PubMed  CAS  Google Scholar 

  • Kang HS, Chin RK, Wang Y, Yu P, Wang J, Newell KA, Fu YX (2002) Signaling via LTbetaR on the lamina propria stromal cells of the gut is required for IgA production. Nat Immunol 3:576–582

    Article  PubMed  CAS  Google Scholar 

  • Kerjaschki D, Regele HM, Moosberger I, Nagy-Bojarski K, Watschinger B, Soleiman A, Birner P, Krieger S, Hovorka A, Silberhumer G, Laakkonen P, Petrova T, Langer B, Raab I (2004) Lymphatic neoangiogenesis in human kidney transplants is associated with immunologically active lymphocytic infiltrates. J Am Soc Nephrol 15:603–612

    Article  PubMed  CAS  Google Scholar 

  • Kim M-Y, Anderson G, Martensson I-L, Erlandsson L, Arlt W, White A, Lane PJL (2005) OX40-ligand and CD30-ligand are expressed on adult but not neonatal CD4+CD3- inducer cells: evidence that IL7 signals regulate CD30-ligand but not OX40-ligand expression. J Immunol 174:6686–6691

    PubMed  CAS  Google Scholar 

  • Kim MY, Gaspal FM, Wiggett HE, McConnell FM, Gulbranson-Judge A, Raykundalia C, Walker LS, Goodall MD, Lane PJ (2003) CD4(+)CD3(−) accessory cells costimulate primed CD4 T cells through OX40 and CD30 at sites where T cells collaborate with B cells. Immunity 18:643–654

    Article  PubMed  CAS  Google Scholar 

  • Kim MY, McConnell FM, Gaspal FM, White A, Glanville SH, Bekiaris V, Walker LS, Caamano J, Jenkinson E, Anderson G, Lane PJ (2007) Function of CD4+CD3− cells in relation to B- and T-zone stroma in spleen. Blood 109:1602–1610

    Article  PubMed  CAS  Google Scholar 

  • Kim MY, Rossi S, Withers D, McConnell F, Toellner KM, Gaspal F, Jenkinson E, Anderson G, Lane PJ (2008) Heterogeneity of lymphoid tissue inducer cell populations present in embryonic and adult mouse lymphoid tissues. Immunology 124:166–174

    Article  PubMed  CAS  Google Scholar 

  • Kim MY, Toellner KM, White A, McConnell FM, Gaspal FM, Parnell SM, Jenkinson E, Anderson G, Lane PJ (2006) Neonatal and adult CD4+CD3- cells share similar gene expression profile, and neonatal cells up-regulate OX40 ligand in response to TL1A (TNFSF15). J Immunol 177:3074–3081

    PubMed  CAS  Google Scholar 

  • Kumararatne DS, Bazin H, MacLennan IC (1981) Marginal zones: the major B cell compartment of rat spleens. Eur J Immunol 11:858–864

    Article  PubMed  CAS  Google Scholar 

  • Kurebayashi S, Ueda E, Sakaue M, Patel DD, Medvedev A, Zhang F, Jetten AM (2000) Retinoid-related orphan receptor gamma (RORgamma) is essential for lymphoid organogenesis and controls apoptosis during thymopoiesis. Proc Natl Acad Sci USA 97:10132–10137

    Article  PubMed  CAS  Google Scholar 

  • Lammermann T, Bader BL, Monkley SJ, Worbs T, Wedlich-Soldner R, Hirsch K, Keller M, Forster R, Critchley DR, Fassler R, Sixt M (2008) Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453:51–55

    Article  PubMed  CAS  Google Scholar 

  • Lane PJL, Gaspal MC, Kim M-Y (2005) Two sides of a cellular coin: CD4+CD3− cells orchestrate memory antibody responses and lymph node organisation. Nat Rev Immunol 5:655–660

    Article  PubMed  CAS  Google Scholar 

  • Lane PJL, MacLennan ICM (1986) Impaired IgG2 anti-pneumococcal antibody responses in patients with recurrent infection and normal IgG2 levels but no IgA. Clin Exp Immunol 65:427–433

    PubMed  CAS  Google Scholar 

  • Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, Walenz BP, Axelrod N, Huang J, Kirkness EF, Denisov G, Lin Y, MacDonald JR, Pang AW, Shago M, Stockwell TB, Tsiamouri A, Bafna V, Bansal V, Kravitz SA, Busam DA, Beeson KY, McIntosh TC, Remington KA, Abril JF, Gill J, Borman J, Rogers YH, Frazier ME, Scherer SW, Strausberg RL, Venter JC (2007) The diploid genome sequence of an individual human. PLoS Biol 5:e254

    Article  PubMed  CAS  Google Scholar 

  • Liu YJ, Oldfield S, MacLennan IC (1988) Memory B cells in T cell-dependent antibody responses colonize the splenic marginal zones. Eur J Immunol 18:355–362

    Article  PubMed  CAS  Google Scholar 

  • Liu YJ, Zhang J, Lane PJ, Chan EY, MacLennan IC (1991) Sites of specific B cell activation in primary and secondary responses to T cell-dependent and T cell-independent antigens. Eur J Immunol 21:2951–2962

    Article  PubMed  CAS  Google Scholar 

  • Lu TT, Cyster JG (2002) Integrin-mediated long-term B cell retention in the splenic marginal zone. Science 297:409–412

    Article  PubMed  CAS  Google Scholar 

  • Luther SA, Bidgol A, Hargreaves DC, Schmidt A, Xu Y, Paniyadi J, Matloubian M, Cyster JG (2002) Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis. J Immunol 169:424–433

    PubMed  CAS  Google Scholar 

  • Mackay F, Browning JL (2002) BAFF: a fundamental survival factor for B cells. Nat Rev Immunol 2:465–475

    Article  PubMed  CAS  Google Scholar 

  • MacLennan ICM (1994) Germinal centers. Annu Rev Immunol 12:117–139

    Article  PubMed  CAS  Google Scholar 

  • Martin F, Oliver AM, Kearney JF (2001) Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity 14:617–629

    Article  PubMed  CAS  Google Scholar 

  • Matloubian M, Lo CG, Cinamon G, Lesneski MJ, Xu Y, Brinkmann V, Allende ML, Proia RL, Cyster JG (2004) Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427:355–360

    Article  PubMed  CAS  Google Scholar 

  • Mebius RE (2003) Organogenesis of lymphoid tissues. Nat Rev Immunol 3:292–303

    Article  PubMed  CAS  Google Scholar 

  • Mebius RE, Kraal G (2005) Structure and function of the spleen. Nat Rev Immunol 5:606–616

    Article  PubMed  CAS  Google Scholar 

  • Mebius RE, Rennert P, Weissman IL (1997) Developing lymph nodes collect CD4+CD3− LTbeta+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 7:493–504

    Article  PubMed  CAS  Google Scholar 

  • Meylan F, Davidson TS, Kahle E, Kinder M, Acharya K, Jankovic D, Bundoc V, Hodges M, Shevach EM, Keane-Myers A, Wang EC, Siegel RM (2008) The TNF-family receptor DR3 is essential for diverse T cell-mediated inflammatory diseases. Immunity 29:79–89

    Article  PubMed  CAS  Google Scholar 

  • Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T (2000) Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme [see comments]. Cell 102:553–563

    Article  PubMed  CAS  Google Scholar 

  • Ngo VN, Cornall RJ, Cyster JG (2001) Splenic T zone development is B cell dependent. J Exp Med 194:1649–1660

    Article  PubMed  CAS  Google Scholar 

  • Ngo VN, Korner H, Gunn MD, Schmidt KN, Riminton DS, Cooper MD, Browning JL, Sedgwick JD, Cyster JG (1999) Lymphotoxin alpha/beta and tumor necrosis factor are required for stromal cell expression of homing chemokines in B and T cell areas of the spleen. J Exp Med 189:403–412

    Article  PubMed  CAS  Google Scholar 

  • Nolte MA, Arens R, Kraus M, van Oers MH, Kraal G, van Lier RA, Mebius RE (2004) B cells are crucial for both development and maintenance of the splenic marginal zone. J Immunol 172:3620–3627

    PubMed  CAS  Google Scholar 

  • Nolte MA, Belien JA, Schadee-Eestermans I, Jansen W, Unger WW, van Rooijen N, Kraal G, Mebius RE (2003) A conduit system distributes chemokines and small blood-borne molecules through the splenic white pulp. J Exp Med 198:505–512

    Article  PubMed  CAS  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer-Verlag, New York

    Google Scholar 

  • Oliver AM, Martin F, Gartland GL, Carter RH, Kearney JF (1997) Marginal zone B cells exhibit unique activation, proliferative and immunoglobulin secretory responses. Eur J Immunol 27:2366–2374

    Article  PubMed  CAS  Google Scholar 

  • Oliver AM, Martin F, Kearney JF (1999) IgMhighCD21high lymphocytes enriched in the splenic marginal zone generate effector cells more rapidly than the bulk of follicular B cells. J Immunol 162:7198–7207

    PubMed  CAS  Google Scholar 

  • Putnam NH, Butts T, Ferrier DE, Furlong RF, Hellsten U, Kawashima T, Robinson-Rechavi M, Shoguchi E, Terry A, Yu JK, Benito-Gutierrez EL, Dubchak I, Garcia-Fernandez J, Gibson-Brown JJ, Grigoriev IV, Horton AC, de Jong PJ, Jurka J, Kapitonov VV, Kohara Y, Kuroki Y, Lindquist E, Lucas S, Osoegawa K, Pennacchio LA, Salamov AA, Satou Y, Sauka-Spengler T, Schmutz J, Shin IT, Toyoda A, Bronner-Fraser M, Fujiyama A, Holland LZ, Holland PW, Satoh N, Rokhsar DS (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 453:1064–1071

    Article  PubMed  CAS  Google Scholar 

  • Reif K, Ekland EH, Ohl L, Nakano H, Lipp M, Forster R, Cyster JG (2002) Balanced responsiveness to chemoattractants from adjacent zones determines B-cell position. Nature 416:94–99

    Article  PubMed  Google Scholar 

  • Rogozin IB, Iyer LM, Liang L, Glazko GV, Liston VG, Pavlov YI, Aravind L, Pancer Z (2007) Evolution and diversification of lamprey antigen receptors: evidence for involvement of an AID-APOBEC family cytosine deaminase. Nat Immunol 8:647–656

    Article  PubMed  CAS  Google Scholar 

  • Rubtsov AV, Swanson CL, Troy S, Strauch P, Pelanda R, Torres RM (2008) TLR agonists promote marginal zone B cell activation and facilitate T-dependent IgM responses. J Immunol 180:3882–3888

    PubMed  CAS  Google Scholar 

  • Scandella E, Bolinger B, Lattmann E, Miller S, Favre S, Littman DR, Finke D, Luther SA, Junt T, Ludewig B (2008) Restoration of lymphoid organ integrity through the interaction of lymphoid tissue-inducer cells with stroma of the T cell zone. Nat Immunol 9:667–675

    Article  PubMed  CAS  Google Scholar 

  • Shiow LR, Rosen DB, Brdickova N, Xu Y, An J, Lanier LL, Cyster JG, Matloubian M (2006) CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature 440:540–544

    Article  PubMed  CAS  Google Scholar 

  • Slifka MK, Antia R, Whitmire JK, Ahmed R (1998) Humoral immunity due to long-lived plasma cells. Immunity 8:363–372

    Article  PubMed  CAS  Google Scholar 

  • Sun Z, Unutmaz D, Zou YR, Sunshine MJ, Pierani A, Brenner-Morton S, Mebius RE, Littman DR (2000) Requirement for RORgamma in thymocyte survival and lymphoid organ development. Science 288:2369–2373

    Article  PubMed  CAS  Google Scholar 

  • Ueno T, Hara K, Willis MS, Malin MA, Hopken UE, Gray DH, Matsushima K, Lipp M, Springer TA, Boyd RL, Yoshie O, Takahama Y (2002) Role for CCR7 ligands in the emigration of newly generated T lymphocytes from the neonatal thymus. Immunity 16:205–218

    Article  PubMed  CAS  Google Scholar 

  • Vondenhoff MF, Desanti GE, Cupedo T, Bertrand JY, Cumano A, Kraal G, Mebius RE, Golub R (2008) Separation of splenic red and white pulp occurs before birth in a LTalphabeta-independent manner. J Leukoc Biol 84:152–161

    Article  PubMed  CAS  Google Scholar 

  • Watts TH (2005) TNF/TNFR family members in costimulation of T cell responses. Annu Rev Immunol 23:23–68

    Article  PubMed  CAS  Google Scholar 

  • Wilson M, Hsu E, Marcuz A, Courtet M, Du Pasquier L, Steinberg C (1992) What limits affinity maturation of antibodies in Xenopus – the rate of somatic mutation or the ability to select mutants? Embo J 11:4337–4347

    PubMed  CAS  Google Scholar 

  • Withers DR, Kim MY, Bekiaris V, Rossi SW, Jenkinson WE, Gaspal F, McConnell F, Caamano JH, Anderson G, Lane PJ (2007) The role of lymphoid tissue inducer cells in splenic white pulp development. Eur J Immunol 37:3240–3245

    Article  PubMed  CAS  Google Scholar 

  • Woolf E, Grigorova I, Sagiv A, Grabovsky V, Feigelson SW, Shulman Z, Hartmann T, Sixt M, Cyster JG, Alon R (2007) Lymph node chemokines promote sustained T lymphocyte motility without triggering stable integrin adhesiveness in the absence of shear forces. Nat Immunol 8:1076–1085

    Article  PubMed  CAS  Google Scholar 

  • Zapata A, Ameimiya CT (2000) Phylogeny of lower vertebrates and their immunological structures. In: du Pasquier L, Litman GW (eds) Origin and evolution of the vertebrate immune system. Springer, Berlin, pp 67–110

    Google Scholar 

Download references

Acknowledgments

This work was supported by a Wellcome Trust Programme Grant to PL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. L. Lane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Lane, P.J.L., McConnell, F.M., Withers, D. (2011). Formation and Function of White Pulp Lymphocyte Rich Areas of Spleen. In: Balogh, P. (eds) Developmental Biology of Peripheral Lymphoid Organs. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14429-5_12

Download citation

Publish with us

Policies and ethics