Skip to main content

Structural Evolution of the Spleen in Man and Mouse

  • Chapter
  • First Online:
Book cover Developmental Biology of Peripheral Lymphoid Organs

Abstract

Of all the peripheral lymphoid tissues, spleen represents the earliest organ specialized to perform adaptive immune responses, and it has also preserved its basic structural organization in various vertebrate classes. Its architecture, as well as developmental properties, is strikingly different from other secondary lymphoid organs. Here we summarize the developmental regulation of its main tissue compartments in man and mouse during the prenatal and early postnatal period, with particular emphasis on its nonhemopoietic stromal constituents and their macrodomains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe Y, Minegishi T, Leung PC (2004) Activin receptor signaling. Growth Factors 22:105–110

    Article  PubMed  CAS  Google Scholar 

  • Agius C, Roberts RJ (2003) Melano-macrophage centres and their role in fish pathology. J Fish Dis 26:499–509

    Article  PubMed  CAS  Google Scholar 

  • Aird WC, Jahroudi N, Weiler-Guettler H, Rayburn HB, Rosenberg RD (1995) Human von Willebrand factor gene sequences target expression to a subpopulation of endothelial cells in transgenic mice. Proc Natl Acad Sci USA 92:4567–4571

    Article  PubMed  CAS  Google Scholar 

  • Alimzhanov MB, Kuprash DV, Kosco-Vilbois MH, Luz A, Turetskaya RL, Tarakhovsky A, Rajewsky K, Nedospasov SA, Pfeffer K (1997) normal development of secondary lymphoid tissues in lymphotoxin beta-deficient mice. Proc Natl Acad Sci USA 94:9302–9307

    Article  PubMed  CAS  Google Scholar 

  • Ansell K, Ngo VN, Hyman PL, Luther SA, Förster R, Sedgwick JD, Browning JL, Lipp M, Cyster JG (2000) A chemokine-driven positive feedback organizes lymphoid follicles. Nature 406:309–314

    Article  CAS  Google Scholar 

  • Apelqvist A, Ahlgren U, Edlund H (1997) Sonic hedgehog directs specialized mesoderm differentiation in the intestine and pancreas. Curr Biol 7:801–804

    Article  PubMed  CAS  Google Scholar 

  • Asma GE, Langlois van den Bergh R, Vossen JM (1984) Development of pre-B and B lymphocytes in the human fetus. Clin Exp Immunol 56:407–414

    PubMed  CAS  Google Scholar 

  • Bajénoff M, Egen JG, Koo LY, Laugier JP, Brau F, Glaichenhaus N, Germain RN (2006) Stromal cell networks regulate lymphoid entry, migration and territoriality in lymph nodes. Immunity 25:989–1001

    Article  PubMed  CAS  Google Scholar 

  • Bajenoff M, Glaichenhaus N, Germain RN (2008) Fibroblastic reticular cells guide T lymphocyte entry into and migration within the splenic T cell zone. J Immunol 181:3947–3954

    PubMed  CAS  Google Scholar 

  • Balázs M, Horváth G, Grama L, Balogh P (2001) Phenotypic identification and development of distinct microvascular compartments in the postnatal mose spleen. Cell Immunol 212:126–137

    Article  PubMed  CAS  Google Scholar 

  • Balogh P, Aydar Y, Tew JG, Szakal AK (2001) Ontogeny of the follicular dendritic cell phenotype and function in the postnatal murine spleen. Cell Immunol 214:45–53

    Article  PubMed  CAS  Google Scholar 

  • Balogh P, Horváth G, Szakal AK (2004) Immunoarchitecture of distinct reticular fibroblastic domains in the white pulp of mouse spleen. J Histochem Cytochem 52:1287–1298

    Article  PubMed  CAS  Google Scholar 

  • Balogh P, Balázs M, Czömpöly T, Weih DS, Arnold HH, Weih F (2007) Distinct roles of lymphotoxin-beta signaling and the homeodomain transcription factor Nkx2.3 in the ontogeny of endothelial compartments in spleen. Cell Tissue Res 328:473–486

    Article  PubMed  CAS  Google Scholar 

  • Bertrand JY, Desanti GE, Lo-Man R, Leclerc C, Cumano A, Golub R (2006) Fetal spleen stroma drives macrophage commitment. Development 133:3619–3628

    Article  PubMed  CAS  Google Scholar 

  • Bovári J, Czömpöly T, Olasz K, Arnold HH, Balogh P (2007) Complex organizational defects of fibroblast architecture in the mouse spleen with Nkx2.3 homeodomain deficiency. Pathol Oncol Res 13:227–235

    Article  PubMed  Google Scholar 

  • Brendolan A, Ferretti E, Salsi V, Moses K, Quaggin S, Blasi F, Cleary ML, Selleri L (2005) A Pbx1-dependent genetic and transcriptional network regulates spleen ontogeny. Development 132:3113–3126

    Article  PubMed  CAS  Google Scholar 

  • Brendolan A, Rosado MM, Carsetti R, Selleri L, Dear TN (2007) Development and function of the mammalian spleen. Bioessays 29:166–177

    Article  PubMed  CAS  Google Scholar 

  • Burn SF, Boot MJ, de Angelis C, Doohan R, Arques CG, Torres M, Hill RE (2008) The dynamics of spleen morphogenesis. Dev Biol 318:303–311

    Article  PubMed  CAS  Google Scholar 

  • Calhoun DA, Li Y, Braylan RC, Christensen RD (1996) Assessment of the contribution of the spleen to granulocytopoiesis and erythropoiesis of the mid-gestation human fetus. Early Hum Dev 46:217–227

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Pikkarainen T, Elomaa O, Soininen R, Kodama T, Kraal G, Tryggvason K (2005) Defective microarchitecture of the spleen marginal zone and impaired response to a thymus-independent type 2 antigen in mice lacking scavenger receptors MARCO and SR-A. J Immunol 175:8173–8180

    PubMed  CAS  Google Scholar 

  • Chen Y, Yu M, Podd A, Wen R, Chrzanowska-Wodnicka M, White GC, Wang D (2008) A critical role of Rap1b in B-cell trafficking and marginal zone B-cell development. Blood 111:4627–4636

    Article  PubMed  CAS  Google Scholar 

  • Cho JH (2008) The genetics and immunopathogenesis of inflammatory bowel disease. Nat Rev Immunol 8:458–466

    Article  PubMed  CAS  Google Scholar 

  • Dear TN, Colledge WH, Carlton MB, Lavenir I, Larson T, Smith AJ, Warren AJ, Evans MJ, Sofroniew MV, Rabbitts TH (1995) The Hox11 gene is essential for cell survival during spleen development. Development 121:2909–2915

    PubMed  CAS  Google Scholar 

  • De Togni P, Goellner J, Ruddle NH, Streeter PR, Fick A, Mariathasan S, Smith SC, Carlson R, Shornick LP, Strauss-Schoenberger J, Chaplin DD (1994) Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science 264:703–707

    Article  PubMed  CAS  Google Scholar 

  • Del Cacho E, Gallego M, Sanz A, Zapata A (1993) Characterization of distal lymphoid nodules in the chicken caecum. Anat Rec 237:512–517

    Article  PubMed  CAS  Google Scholar 

  • Del Cacho E, Gallego M, Arnal C, Bascuas JA (1995) Localization of splenic cells with antigen-transporting capability in the chicken. Anat Rec 241:105–112

    Article  PubMed  CAS  Google Scholar 

  • Du Pasquier L, Robert J, Courtet M, Mussmann R (2000) B-cell development in the amphibian Xenopus. Immunol Rev 175:201–213

    Article  PubMed  CAS  Google Scholar 

  • Ellyard JI, Avery DT, Mackay CR, Tangye SG (2005) Contribution of stromal cells to the migration, function and retention of plasma cells in human spleen: potential roles of CXCL12, IL-6 and CD54. Eur J Immunol 35:699–708

    Article  PubMed  CAS  Google Scholar 

  • Fänge R, Nilsson S (1985) The fish spleen: structure and function. Experientia 41:152–158

    Article  PubMed  Google Scholar 

  • Flajnik MF (2002) Comparative analyses of immunoglobulin genes: surprises and portents. Nat Rev Immunol 2:688–698

    Article  PubMed  CAS  Google Scholar 

  • Green MC (1967) A defect of the splanchnic mesoderm caused by the mutant gene dominant hemimelia in the mouse. Dev Biol 15:62–89

    Article  PubMed  CAS  Google Scholar 

  • Gretz JE, Kaldjian EP, Anderson AO, Shaw S (1996) Sophisticated strategies for information encounter in the lymph node: the reticular network as a conduit of soluble information and a highway for cell traffic. J Immunol 157:495–499

    PubMed  CAS  Google Scholar 

  • Guinamard R, Okigaki M, Schlessinger J, Ravetch JV (2000) Absence of marginal zone B cells in Pyk-2-deficient mice defines their role in the humoral response. Nat Immunol 1:31–36

    PubMed  CAS  Google Scholar 

  • Hansen JD, Zapata AG (1998) Lymphocyte development in fish and amphibians. Immunol Rev 166:199–220

    Article  PubMed  CAS  Google Scholar 

  • Hargreaves DC, Hyman PL, Lu TT, Ngo VN, Bidgol A, Suzuki G, Zou YR, Littman DR, Cyster JG. (2001) A coordinated change in in chemokine responsiveness quides plasma cell movements. J Exp Med 194:45–56

    Article  PubMed  CAS  Google Scholar 

  • Hecksher-Sørensen J, Watson RP, Lettice LA, Serup P, Eley L, De Angelis C, Ahlgren U, Hill RE (2004) The splanchnic mesodermal plate directs spleen and pancreatic laterality, and is regulated by Bapx1/Nkx3.2. Development 131:4665–4675

    Article  PubMed  CAS  Google Scholar 

  • Igyártó BZ, Magyar A, Oláh I (2007) Origin of follicular dendritic cell in the chicken spleen. Cell Tissue Res 327:83–92

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa H (1985) Differentiation of red pulp and evaluation of hemopoietic role of human prenatal spleen. Arch Histol Jpn 48:183–197

    Article  PubMed  CAS  Google Scholar 

  • Ito S, Naito M, Kobayashi Y, Takatsuka H, Jiang S, Usuda H, Umezu H, Hasegawa G, Arakawa M, Shultz LD, Elomaa O, Tryggvason K (1999) Roles of a macrophage receptor with collagenous structure (MARCO) in host defense and heterogeneity of splenic marginal zone macrophages. Arch Histol Cytol 62:83–95

    Article  PubMed  CAS  Google Scholar 

  • Jenkins D (2009) Hedgehog signalling: emerging evidence for non-canonical pathways. Cell Signal 21:1023–1034

    Article  PubMed  CAS  Google Scholar 

  • Jeurissen SHM (1993) The role of various compartments in the chicken spleen during an antigen-specific humoral response. Immunology 80:29–33

    PubMed  CAS  Google Scholar 

  • Kaiser P, Poh TY, Rothwell L, Avery S, Balu S, Pathania US, Hughes S, Goodchild M, Morrell S, Watson M, Bumstead N, Kaufman J, Young JR (2005) A genomic analysis of chicken cytokines and chemokines. J Interferon Cytokine Res 25:467–484

    Article  PubMed  CAS  Google Scholar 

  • Katakai T, Suto H, Sugai M, Gonda H, Togawa A, Suematsu S, Ebisuno Y, Katagiri K, Kinashi T, Shimizu A (2008) Organizer-like reticular stromal cell layer common to adult secondary lymphoid organs. J Immunol 181:6189–6200

    PubMed  CAS  Google Scholar 

  • Kim BM, Miletich I, Mao J, McMahon AP, Sharpe PA, Shivdasani RA (2007) Independent functions and mechanisms of homeobox gene Barx1 in patterning mouse stomach and spleen. Development 134:3603–3613

    Article  PubMed  CAS  Google Scholar 

  • Kim SK, Hebrok M, Li E, Oh SP, Schrewe H, Harmon EB, Lee JS, Melton DA (2000) Activin receptor patterning of foregut organogenesis. Genes Dev 14:1866–1871

    PubMed  CAS  Google Scholar 

  • Koehler K, Franz T, Dear TN (2000) Hox11 is required to maintain normal Wt1 mRNA levels int he developing spleen. Dev Dyn 218:201–206

    Article  PubMed  CAS  Google Scholar 

  • Koni PA, Sacca R, Lawton P, Browning JL, Ruddle NH, Flavell RA (1997) Distinct roles in lymphoid organogenesis for lymphotoxins alpha and beta revealed in lymphotoxin beta-deficient mice. Immunity 6:491–500

    Article  PubMed  CAS  Google Scholar 

  • Kraal G, Schornagel K, Streeter PR, Holzmann B, Butcher EC (1995) Expression of the mucosal vascular addressin, MAdCAM-1, on sinus-lining cells in the spleen. Am J Pathol 147:763–771

    PubMed  CAS  Google Scholar 

  • Kranich J, Krautler NJ, Heinen E, Polymenidou M, Bridel C, Schildknecht A, Huber C, Kosco-Vilbois MH, Zinkernagel R, Miele G, Aguzzi A (2008) Follicular dendritic cells control engulfment of apoptotic bodies by secreting Mfge8. J Exp Med 205:1293–1302

    Article  PubMed  CAS  Google Scholar 

  • Langenau DM, Palomero T, Kanki JP, Ferrando AA, Zhou Y, Zon LI et al (2002) Molecular cloning and developmental expression of Tlx (Hox11) genes in zebrafish (Danio rerio). Mech Dev 117:243–248

    Article  PubMed  CAS  Google Scholar 

  • Lettice LA, Purdie L A, Carlson GJ, Kilanowski F, Dorin J, Hill RE (1999) The mouse bagpipe gene controls development of axial skeleton, skull, and spleen. Proc Natl Acad Sci USA 96:9695–9700

    Article  PubMed  CAS  Google Scholar 

  • Link A, Vogt TK, Favre S, Britschgi MR, Acha-Orbea H, Hinz B, Cyster JG, Luther SA (2007) Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat Immunol 8:1255–1265

    Article  PubMed  CAS  Google Scholar 

  • Lokmic Z, Lämmermann T, Sixt M, Cardell S, Hallmann R, Sorokin L (2008) The extracellular matrix of the spleen as a potential organizer of immune cell compartments. Semin Immunol 20:4–13

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Chang P, Richardson JA, Gan L, Weiler H, Olson EN (2000). The basic helix-loop-helix transcription factor capsulin controls spleen organogenesis. Proc Natl Acad Sci USA 97:9525–9530

    Article  PubMed  CAS  Google Scholar 

  • Luther SA, Tang HL, Hyman PL, Farr AG, Cyster JG (2000) Coexpression of the chemolines ELC and SLC by T zone stromal cells and deletion of the ELC gene in the plt/plt mouse. Proc Natl Acad Sci USA 97:12694–12699

    Article  PubMed  CAS  Google Scholar 

  • Martin F, Kearney JF (2002) Marginal zone B cells. Nat Rev Immunol 2:323–335

    Article  PubMed  CAS  Google Scholar 

  • Marr S, Morales H, Bottaro A, Cooper M, Flajnik M, Robert J (2007) Localization and differential expression of activation-induced cytidine deaminase in the amphibian Xenopus upon antigen stimulation and during early development. J Immunol 179:6783–6789

    PubMed  CAS  Google Scholar 

  • Matsumoto M, Mariathasan S, Nahm MH, Baranyay F, Peschon JJ, Chaplin DD (1996) Role of lymphotoxin and the type I TNF receptor in the formation of germinal centers. Science 271:1289–1291

    Article  PubMed  CAS  Google Scholar 

  • Mast J, Goddeeris BM (1999) Development of immunocompetence of broiler chickens. Vet Immunol Immunopathol 70:245–256

    Article  PubMed  CAS  Google Scholar 

  • Mebius RE, Nolte MA, Kraal G (2004) Development and function of splenic marginal zone. Crit Rev Immunol24:449–464

    Article  PubMed  Google Scholar 

  • Mitchell J (1973) Lymphocyte circulation in the spleen Marginal zone bridging channels and their possible role in cell traffic. Immunology 24:93–107

    PubMed  CAS  Google Scholar 

  • Nagy N, Igyártó B, Magyar A, Gazdag E, Palya V, Oláh I (2005) Oesopphageal tonsil of the chicken. Acta Vet Hung 53:173–188

    Article  PubMed  CAS  Google Scholar 

  • Nagy N, Oláh I (2007) Pyloric tonsil as a novel gut-associated lymphoepithelial organ of the chicken. J Anat 211:407–411

    Article  PubMed  Google Scholar 

  • Ngo VN, Cornall RJ, Cyster JG (2001) Splenic T zone development is B cell dependent. J Exp Med 194:1649–1660

    Article  PubMed  CAS  Google Scholar 

  • Nolte MA, Hamann A, Kraal G, Mebius RE (2002) The strict regulation of lymphocyte migration to splenic white pulp does not involve common homing receptors. Immunology 106:299–307

    Article  PubMed  CAS  Google Scholar 

  • Nolte MA, Beliën JA, Schadee-Eestermans I, Jansen W, Unger WW, van Rooijen N, Kraal G, Mebius RE (2003) A conduit system distributes chemokines and small blood-borne molecules through the splenic white pulp. J Exp Med 198:505–512

    Article  PubMed  CAS  Google Scholar 

  • Nolte MA, Arens R, Kraus M, van Oers MH, Kraal G, van Lier RA, Mebius RE (2004) B cells are crucial for both development and maintenance of the splenic marginal zone. J Immunol 172:3620–3627

    PubMed  CAS  Google Scholar 

  • Oh SP, Li E (2002) Gene-dosage-sensitive genetic interactions between inversus viscerum (iv), nodal, and activin type IIB receptor (ActRIIB) genes in asymmetrical patterning of the visceral organs along the left-right axis. Dev Dyn 224:279–290

    Article  PubMed  CAS  Google Scholar 

  • Pabst O, Zweigerdt R, Arnold HH (1999) Targeted disruption of the homeobox transcription factor Nkx2–3 in mice results in postnatal lethality and abnormal development of small intestine and spleen. Development 126:2215–2225

    PubMed  CAS  Google Scholar 

  • Pabst O, Förster R, Lipp M, Engel H, Arnold HH (2000) NKX2.3 is required for MAdCAM-1 expression and homing of lymphocytes in spleen and mucosa-associated lymphoid tissue. EMBO J 19:2015–2023

    Article  PubMed  CAS  Google Scholar 

  • Pasparakis M, Alexopoulou L, Episkopou V, Kollias G (1996) Immune and inflammatory responses in TNF-a–deficient mice: a critical requirement for TNF-a in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. J Exp Med 184:1397–1411

    Article  PubMed  CAS  Google Scholar 

  • Pasparakis M, Kousteni S, Peschon J, Kollias G (2000) Tumor necrosis factor and the p55TNF receptor are required for optimal development of the marginal sinus and for migration of follicular dendritic cell precursors into splenic follicles. Cell Immunol 201:33–41

    Article  PubMed  CAS  Google Scholar 

  • Patterson KD, Drysdale TA, Krieg PA (2000) Embryonic origins of spleen asymmetry. Development 127:167–175

    PubMed  CAS  Google Scholar 

  • Pellas TC, Weiss L (1990) Deep splenic lymphatic vessels in the mouse: a route of splenic exit for recirculating lymphocytes. Am J Anat 187:347–354

    Article  PubMed  CAS  Google Scholar 

  • Qin J, Konno H, Ohshima D, Yanai H, Motegi H, Shimo Y, Hirota F, Matsumoto M, Takaki S, Inoue J, Akiyama T (2007) Developmental stage-dependent collaboration between the TNF receptor-associated factor 6 and lymphotoxin pathways for B cell follicle organization in secondary lymphoid organs. J Immunol 179:6799–6807

    PubMed  CAS  Google Scholar 

  • Robert J, Ohta Y (2009) Comparative and developmental study of the immune system in Xenopus. Dev Dyn 238:1249–1270

    Article  PubMed  CAS  Google Scholar 

  • Roberts CW, Shutter JR, Korsmeyer SJ (1994). Hox11 controls the genesis of the spleen. Nature 368:747–749

    Article  PubMed  CAS  Google Scholar 

  • Satoh T, Sakurai E, Tada H, Masuda T (2009) Ontogeny of reticular framework of white pulp and marginal zone in human spleen: immunohistochemical studies of fetal spleens from the 17th to 40th week of gestation. Cell Tissue Res 336:287–297

    Article  PubMed  Google Scholar 

  • Schneider A, Mijalski T, Schlange T, Dai W, Overbeek P, Arnold HH, Brand T (1999) The homeobox gene NKX3.2 is a target of left-right signalling and is expressed on opposite sides in chick and mouse embryos. Curr Biol 9:911–914

    Article  PubMed  CAS  Google Scholar 

  • Sock E, Rettig SD, Enderich J, Bösl MR, Tamm ER, Wegner M (2004) Gene targeting reveals a widespread role for the high-mobility-group transcription factor Sox11 in tissue remodeling. Mol Cell Biol 24:6635–6644

    Article  PubMed  CAS  Google Scholar 

  • Steiniger B, Barth P, Herbst B, Hartnell A, Crocker PR (1997) The species-specific structure of microanatomical compartments in the human spleen: strongly sialoadhesin-positive macrophages occur in the perifollicular zone, but not in the marginal zone. Immunology 92:307–316

    Article  PubMed  CAS  Google Scholar 

  • Steiniger B, Barth P (2000) Microanatomy and function of the spleen. Adv Anat Embryol Cell Biol 151:III–IX, 1–101

    PubMed  CAS  Google Scholar 

  • Steiniger B, Barth P, Hellinger A (2001) The perifollicular and marginal zones of the human splenic white pulp: do fibroblasts guide lymphocyte immigration? Am J Pathol 59:501–512

    Google Scholar 

  • Steiniger B, Ulfig N, Risse M, Barth PJ (2007a) Fetal and early post-natal development of the human spleen: from primordial arterial B-cell lobules to a non-segmented organ. Histochem Cell Biol 128:205–215

    Article  PubMed  CAS  Google Scholar 

  • Steiniger B, Stachniss V, Schwarzbach H, Barth PJ, Steiniger B, Stachniss V, Schwarzbach H, Barth PJ (2007b) Phenotypic differences between red pulp capillary and sinusoidal endothelia help localizing the open splenic circulation in humans. Histochem Cell Biol 128:391–398

    Article  PubMed  CAS  Google Scholar 

  • Takimoto T, Takahashi K, Sato K, Akiba Y (2005) Molecular cloning and functional characterizations of chicken TL1A. Dev Comp Immunol 29:895–905

    Article  PubMed  CAS  Google Scholar 

  • Tierens A, Delabie J, Michiels L, Vanderberghe P, De Wolf-Petters C (1999) Marginal-zone B cells in the human lymph node and spleen show somatic hypermutations and display clonal expansion. Blood 93:226–234

    PubMed  CAS  Google Scholar 

  • Tischendorf F (1985) On the evolution of the spleen. Experientia 41:145–152

    Article  PubMed  CAS  Google Scholar 

  • Vellguth S, von Gaudecker B, Müller-Hermelink HK (1985) The development of the human spleen. Ultrastructural studies in fetuses from the 14th to 24th week of gestation. Cell Tissue Res 242:579–592

    Article  PubMed  CAS  Google Scholar 

  • Vigliano FA, Bermúdez R, Quiroga MI, Nieto JM (2006) Evidence for melano-macrophage centres of teleost as evolutionary precursors of germinal centres of higher vertebrates: an immunohistochemical study. Fish Shellfish Immunol 21:467–471

    Article  PubMed  CAS  Google Scholar 

  • Vondenhoff MF, Desanti GE, Cupedo T, Bertrand JY, Cumano A, Kraal G, Mebius RE, Golub R (2008) Separation of splenic red and white pulp occurs before birth in a LTalphabeta-independent manner. J Leukoc Biol 84:152–161

    Article  PubMed  CAS  Google Scholar 

  • Wang CC, Biben C, Robb L, Nassir F, Barnett L, Davidson NO, Koentgen F, Tarlinton D, Harvey RP (2000) Homeodomain factor Nkx2–3 controls regional expression of leukocyte homing coreceptor MAdCAM-1 in specialized endothelial cells of the viscera. Dev Biol 224:152–167

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Adelson DL, Yilmaz A, Sze SH, Jin Y, Zhu JJ (2005) Genomic organization, annotation, and ligand-receptor inferences of chicken chemokines and chemokine receptor genes based on comparative genomics. BMC Genomics 6:45–62

    Article  PubMed  CAS  Google Scholar 

  • Wen L, Shinton SA, Hardy RR, Hayakawa K (2005) Association of B-1 B cells with follicular dendritic cells in spleen. J Immunol 174:6918–6926

    PubMed  CAS  Google Scholar 

  • Withers DR, Kim MY, Bekiaris V, Rossi SW, Jenkinson WE, Gaspal F, McConnell F, Caamano JH, Anderson G, Lane PJ (2007) The role of lymphoid tissue inducer cells in splenic white pulp development. Eur J Immunol 37:3240–3245

    Article  PubMed  CAS  Google Scholar 

  • Yasuda M, Taura Y, Yokomizo Y, Ekino S. (1998) A comparative study of germinal center: fowls and mammals. Comp Immunol Microbiol Infect Dis 21:179–189

    Article  PubMed  CAS  Google Scholar 

  • Zapata A, Diez B, Cejalvo T, Gutiérrez-de Frías C, Cortés A (2006) Ontogeny of the immune system of fish. Fish Shellfish Immunol 20:126–136

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Pan-Hammarström Q, Zhao Z, Hammarström L (2005) Identification of the activation-inducedcytidine deaminase gene from zebrafish: an evolutionary analysis. Dev Comp Immunol 29:61–71

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Pan-Hammarström Q, Yu S, Wertz N, Zhang X, Li N, Butler JE, Hammarström L (2006) Identification of IgF, a hinge-region-containing Ig class, and IgD in Xenopus tropicalis. Proc Natl Acad Sci USA 103:12087–12092

    Article  PubMed  CAS  Google Scholar 

  • Zindl CL, Kim TH, Zeng M, Archambault AS, Grayson MH, Choi K, Schreiber RD, Chaplin DD (2009) The lymphotoxin LTalpha(1)beta(2) controls postnatal and adult spleen marginal sinus vascular structure and function. Immunity 30:408–420

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the University of Pécs Faculty of Medicine Research Grant to Péter Balogh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Balogh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Balogh, P., Lábadi, Á. (2011). Structural Evolution of the Spleen in Man and Mouse. In: Balogh, P. (eds) Developmental Biology of Peripheral Lymphoid Organs. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14429-5_11

Download citation

Publish with us

Policies and ethics