Skip to main content

Towards Understanding Regulation of Energy Homeostasis by Ceramide Synthases

  • Chapter
  • First Online:
Sensory and Metabolic Control of Energy Balance

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 52))

Abstract

Energy homeostasis and growth require the coordinated regulation of lipid metabolism. The underlying molecular mechanisms are poorly understood. We are interested in identifying key regulators of lipid homeostasis and their functional mechanism. Recently, we identified the schlank gene as a major regulator of lipid homeostasis in Drosophila. Schlank encodes a conserved member of the Lass/CerS family of ceramide synthases , which contain a catalytic Lag1 motif and a homeobox transcription factor domain. Schlank mutant larvae, show decreased levels of sphingolipids and depleted fat stores due to an upregulation of triacylglycerol lipases and a downregulation of SREBP-dependent fatty acid synthesis. In addition, we have demonstrated that mammalian members of the conserved Lass/CerS family had also effects on lipid homeostasis. Therefore, we are currently interested to find how members of this family e.g., schlank may act as regulators coordinating cellular and organismic lipid homeostasis in animals mechanistically. We now address these issues by using a combination of genetics, biochemistry and integrative physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arquier N, Léopold P (2007) Fly foie gras: modeling fatty liver in Drosophila. Cell Metab 5:83–85

    Article  PubMed  CAS  Google Scholar 

  • Bauer R, Voelzmann A, Breiden B, Schepers U, Farwanah H, Hahn I, Eckardt F, Sandhoff K, Hoch M (2009) Schlank, a member of the ceramide synthase family controls growth and body fat in Drosophila. EMBO J 28:3706–3716

    Article  PubMed  CAS  Google Scholar 

  • Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    PubMed  CAS  Google Scholar 

  • Brogiolo W, Stocker H, Ikeya T, Rintelen F, Fernandez R, Hafen E (2001) An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr Biol 11:213–221

    Article  PubMed  CAS  Google Scholar 

  • Dobrosotskaya IY, Seegmiller AC, Brown MS, Goldstein JL, Rawson RB (2002) Regulation of SREBP processing and membrane lipid production by phospholipids in Drosophila. Science 3:879–883

    Article  Google Scholar 

  • Ellisen LW (2005) Growth control under stress: mTOR regulation through the REDD1-TSC pathway. Cell Cycle 4:1500–1502

    Article  PubMed  CAS  Google Scholar 

  • Fuss B, Becker T, Zinke I, Hoch M (2006) The cytohesin Steppke is essential for insulin signalling in Drosophila. Nature 444:945–948

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez E, Wiggins D, Fielding B, Gould AP (2007) Specialized hepatocyte-like cells regulate Drosophila lipid metabolism. Nature 445:275–280

    Article  PubMed  CAS  Google Scholar 

  • Hafen E (2004) Cancer, type 2 diabetes, and ageing: news from flies and worms. Swiss Med Wkly 134:711–719

    PubMed  CAS  Google Scholar 

  • Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18:1926–1945

    Article  PubMed  CAS  Google Scholar 

  • Hietakangas V, Cohen SM (2009) Regulation of tissue growth through nutrient sensing. Annu Rev Genet 43:389–410

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Zhou W, Dong W, Watson AM, Hong Y (2009) From the cover: directed, efficient, and versatile modifications of the Drosophila genome by genomic engineering. Proc Natl Acad Sci USA 106:8284–8249

    Article  PubMed  CAS  Google Scholar 

  • Kohyama-Koganeya A, Sasamura T, Oshima E, Suzuki E, Nishihara S, Ueda R, Hirabayashi Y (2004) Drosophila glucosylceramide synthase: a negative regulator of cell death mediated by proapoptotic factors. J Biol Chem 279:35995–6002

    Article  PubMed  CAS  Google Scholar 

  • Kunte AS, Matthews KA, Rawson RB (2006) Fatty acid auxotrophy in Drosophila larvae lacking SREBP. Cell Metab 3:439–448

    Article  PubMed  CAS  Google Scholar 

  • Lahiri S, Futerman AH (2007) The metabolism and function of sphingolipids and glycosphingolipids Cell. Mol Life Sci 64:2270–2284

    Article  CAS  Google Scholar 

  • Levy M, Futerman AH (2010) Mammalian ceramide synthases. IUBMB Life 62:347–356

    Article  PubMed  CAS  Google Scholar 

  • Pettus BJ, Chalfant CE, Hannun YA (2002) Ceramide in apoptosis: an overview and current perspectives. Biochim Biophys Acta 1585:114–125

    Article  PubMed  CAS  Google Scholar 

  • Simha V, Garg A (2006) Lipodystrophy: lessons in lipid and energy metabolism. Curr Opin Lipidol 17:162–169

    Article  PubMed  CAS  Google Scholar 

  • Summers SA (2006) Ceramides in insulin resistance and lipotoxicity. Prog Lipid Res 45:42–72

    Article  PubMed  CAS  Google Scholar 

  • Van der Horst DJ, Van Marrewijk WJ, Diederen JH (2001) Adipokinetic hormones of insect: release, signal transduction, and responses. Int Rev Cytol 211:179–240

    Article  PubMed  Google Scholar 

  • Venkataraman K, Futerman AH (2002) Do longevity assurance genes containing Hox domains regulate cell development via ceramide synthesis? FEBS Lett 528:3–4

    Article  PubMed  CAS  Google Scholar 

  • Yang G, Badeanlou L, Bielawski J, Roberts AJ, Hannun YA, Samad F (2009) Central role of ceramide biosynthesis in body weight regulation, energy metabolism, and the metabolic syndrome. Am J Physiol Endocrinol Metab 297:E211–224

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Bauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Bauer, R. (2011). Towards Understanding Regulation of Energy Homeostasis by Ceramide Synthases. In: Meyerhof, W., Beisiegel, U., Joost, HG. (eds) Sensory and Metabolic Control of Energy Balance. Results and Problems in Cell Differentiation, vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14426-4_14

Download citation

Publish with us

Policies and ethics