Skip to main content

Microscopic Emission Theories

  • Chapter
  • First Online:
  • 832 Accesses

Part of the book series: Lecture Notes in Physics ((LNP,volume 819))

Abstract

In this chapter, devoted to microscopic approaches, we derive the general expression of the decay width, known as the Fermi golden rule, by using the time-dependent Schrödinger equation. We also introduce the equivalent surface formula containing the preformation amplitude. Then, we show that these relations can be recovered within the reaction Feshbach theory and R-matrix approach. We describe the Resonating Group Method, as the most general microscopic approach to analyze the emission of composite objects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Harada, K., Rauscher, E.A.: Unified theory of alpha decay. Phys. Rev. 169, 818–824 (1968)

    Article  ADS  Google Scholar 

  2. Fliessbach, T., Mang, H.J.: On absolute values of α-decay rates. Nucl. Phys. A 263, 75–85 (1976)

    Article  ADS  Google Scholar 

  3. Wildermuth, K., Fernandez, F., Kanellopoulos, E.J., Sünkel, W.: J. Phys. G 6, 603–617 (1980)

    Article  ADS  Google Scholar 

  4. Fox, L.: Numerical Solution of Ordinary and Partial Differential Equations. Pergamon Press, New York (1962)

    MATH  Google Scholar 

  5. Ixaru, L.: Numerical Methods for Differential Equations and Applications. Reidel, Boston (1984)

    MATH  Google Scholar 

  6. Mişicu, S., Cârjan, N.: Proton decay from excited states in sopherical nuclei. J. Phys. G24, 1745–1755 (1998)

    Article  ADS  Google Scholar 

  7. Talou, P., Strottman, D., Cârjan, N.: Exact calculation of proton decay rates from excited states in spherical nuclei. Phys. Rev. C 60, 054318/1–7 (1999)

    Google Scholar 

  8. Talou, P., Cârjan, N., Negrevergne, C., Strottman, D.: Exact dynamical approach to spherical ground-state proton emission. Phys. Rev. C 62, 014609/1–4 (2000)

    Google Scholar 

  9. Talou, P., Cârjan, N., Strottman, D.: Time-dependent approach to bidimensional quantum tunneling: application to the proton emission from deformed nuclei. Nucl. Phys. A 647, 21–46 (1999)

    Article  ADS  Google Scholar 

  10. Cârjan, N., Rizea, M., Strottman, D.: Improved boundary conditions for the decay of low lying metastable proton states in a time-dependent approach. Comput. Phys. Commun. 173, 41–60 (2005)

    Article  ADS  Google Scholar 

  11. Tanimura, O., Fliessbach, T.: Dynamic model for alpha particle emission during fission. Z. Phys. A 328, 475–486 (1987)

    ADS  Google Scholar 

  12. Canto, F., Brink, D.M.: Microscopic description of the collision between nuclei. Nucl. Phys. A 279, 85–96 (1977)

    Article  ADS  Google Scholar 

  13. Fliessbach, T.: The reduced width amplitude in the reaction theory for composite particles. Z. Phys. A 272, 39–46 (1975)

    Article  ADS  Google Scholar 

  14. Fliessbach, T., Walliser, H.: The structure of the resonanting group equation. Nucl. Phys. A 377, 84–104 (1982)

    Article  ADS  Google Scholar 

  15. Feshbach, H.: Unified theory of nuclear reactions. Ann. Phys. (NY) 5, 357–390 (1958)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Săndulescu, A., Silişteanu, I., Wünsch, R.: Alpha decay within Feshbach theory of nuclear reactions. Nucl. Phys. A 305, 205–212 (1978)

    Article  Google Scholar 

  17. Teichmann, T., Wigner, E.P.: Sum rules in the dispersion theory of nuclear reactions. Phys. Rev. 87, 123–135 (1952)

    Article  ADS  MATH  Google Scholar 

  18. Thomas, R.G.: A formulation of the theory of alpha-particle decay from time-independent equations. Prog. Theor. Phys. 12, 253–264 (1954)

    Article  ADS  MATH  Google Scholar 

  19. Lane, A.M., Thomas, R.G.: R-Matrix theory of nuclear reactions. Rev. Mod. Phys. 30, 257–353 (1958)

    Article  MathSciNet  ADS  Google Scholar 

  20. Kruppa, A.T., Nazarewicz, W.: Gamow and R-Matrix approach to proton emitting nuclei. Phys. Rev. C 69, 054311/1–11 (2004)

    Google Scholar 

  21. Kryger, R.A., et al.: Two-proton emission from the ground state of 12O. Phys. Rev. Lett. 74, 860–863 (1995)

    Article  ADS  Google Scholar 

  22. Barker, F.C.: Width of the 12O ground state. Phys. Rev. C 59, 535–538 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doru S. Delion .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Delion, D.S. (2010). Microscopic Emission Theories. In: Theory of Particle and Cluster Emission. Lecture Notes in Physics, vol 819. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14406-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14406-6_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14405-9

  • Online ISBN: 978-3-642-14406-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics