Advertisement

Microscopic Emission Theories

  • Doru S. DelionEmail author
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 819)

Abstract

In this chapter, devoted to microscopic approaches, we derive the general expression of the decay width, known as the Fermi golden rule, by using the time-dependent Schrödinger equation. We also introduce the equivalent surface formula containing the preformation amplitude. Then, we show that these relations can be recovered within the reaction Feshbach theory and R-matrix approach. We describe the Resonating Group Method, as the most general microscopic approach to analyze the emission of composite objects.

Keywords

Wave Function Wave Packet Decay Width Energy Shift Coulomb Barrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Harada, K., Rauscher, E.A.: Unified theory of alpha decay. Phys. Rev. 169, 818–824 (1968)ADSCrossRefGoogle Scholar
  2. 2.
    Fliessbach, T., Mang, H.J.: On absolute values of α-decay rates. Nucl. Phys. A 263, 75–85 (1976)ADSCrossRefGoogle Scholar
  3. 3.
    Wildermuth, K., Fernandez, F., Kanellopoulos, E.J., Sünkel, W.: J. Phys. G 6, 603–617 (1980)ADSCrossRefGoogle Scholar
  4. 4.
    Fox, L.: Numerical Solution of Ordinary and Partial Differential Equations. Pergamon Press, New York (1962)zbMATHGoogle Scholar
  5. 5.
    Ixaru, L.: Numerical Methods for Differential Equations and Applications. Reidel, Boston (1984)zbMATHGoogle Scholar
  6. 6.
    Mişicu, S., Cârjan, N.: Proton decay from excited states in sopherical nuclei. J. Phys. G24, 1745–1755 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    Talou, P., Strottman, D., Cârjan, N.: Exact calculation of proton decay rates from excited states in spherical nuclei. Phys. Rev. C 60, 054318/1–7 (1999)Google Scholar
  8. 8.
    Talou, P., Cârjan, N., Negrevergne, C., Strottman, D.: Exact dynamical approach to spherical ground-state proton emission. Phys. Rev. C 62, 014609/1–4 (2000)Google Scholar
  9. 9.
    Talou, P., Cârjan, N., Strottman, D.: Time-dependent approach to bidimensional quantum tunneling: application to the proton emission from deformed nuclei. Nucl. Phys. A 647, 21–46 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    Cârjan, N., Rizea, M., Strottman, D.: Improved boundary conditions for the decay of low lying metastable proton states in a time-dependent approach. Comput. Phys. Commun. 173, 41–60 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    Tanimura, O., Fliessbach, T.: Dynamic model for alpha particle emission during fission. Z. Phys. A 328, 475–486 (1987)ADSGoogle Scholar
  12. 12.
    Canto, F., Brink, D.M.: Microscopic description of the collision between nuclei. Nucl. Phys. A 279, 85–96 (1977)ADSCrossRefGoogle Scholar
  13. 13.
    Fliessbach, T.: The reduced width amplitude in the reaction theory for composite particles. Z. Phys. A 272, 39–46 (1975)ADSCrossRefGoogle Scholar
  14. 14.
    Fliessbach, T., Walliser, H.: The structure of the resonanting group equation. Nucl. Phys. A 377, 84–104 (1982)ADSCrossRefGoogle Scholar
  15. 15.
    Feshbach, H.: Unified theory of nuclear reactions. Ann. Phys. (NY) 5, 357–390 (1958)MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. 16.
    Săndulescu, A., Silişteanu, I., Wünsch, R.: Alpha decay within Feshbach theory of nuclear reactions. Nucl. Phys. A 305, 205–212 (1978)CrossRefGoogle Scholar
  17. 17.
    Teichmann, T., Wigner, E.P.: Sum rules in the dispersion theory of nuclear reactions. Phys. Rev. 87, 123–135 (1952)ADSzbMATHCrossRefGoogle Scholar
  18. 18.
    Thomas, R.G.: A formulation of the theory of alpha-particle decay from time-independent equations. Prog. Theor. Phys. 12, 253–264 (1954)ADSzbMATHCrossRefGoogle Scholar
  19. 19.
    Lane, A.M., Thomas, R.G.: R-Matrix theory of nuclear reactions. Rev. Mod. Phys. 30, 257–353 (1958)MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Kruppa, A.T., Nazarewicz, W.: Gamow and R-Matrix approach to proton emitting nuclei. Phys. Rev. C 69, 054311/1–11 (2004)Google Scholar
  21. 21.
    Kryger, R.A., et al.: Two-proton emission from the ground state of 12O. Phys. Rev. Lett. 74, 860–863 (1995)ADSCrossRefGoogle Scholar
  22. 22.
    Barker, F.C.: Width of the 12O ground state. Phys. Rev. C 59, 535–538 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsInstitute of Physics and Nuclear EngineeBucharestRomania

Personalised recommendations