Advertisement

Ternary Emission Processes

  • Doru S. DelionEmail author
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 819)

Abstract

In this chapter we analyze the radioactive processes with three simultaneously emitted fragments. The coupled systems of equations, describing two proton emission and ternary fission, are separately derived. We discuss adiabatic approach and angular distribution of the light cluster in the ternary fission.

Keywords

Angular Distribution Decay Width Resonant State Coulomb Barrier Light Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Goldansky, V.I.: On neutron deficient isotopes of light nuclei and the phenomena of proton and two-proton radioactivity. Nucl. Phys. 19, 482–495 (1960)CrossRefGoogle Scholar
  2. 2.
    Swan, P.: Sequential decay theory for the B11(p, 3α) reaction. Rev. Mod. Phys. 37, 336–345 (1965)ADSCrossRefGoogle Scholar
  3. 3.
    Bernstein, M.A., Friedman, W.A., Lynch, W.G.: Emission of particle unstable resonances from compound nuclei. Phys. Rev. C 29, 132–138 (1984)ADSCrossRefGoogle Scholar
  4. 4.
    Mukha, I.G., Schrieder, G.: Two-proton radioactivity as a genuine three-body decay: the 19Mg probe. Nucl. Phys. A 690, 280c–283c (2001)ADSCrossRefGoogle Scholar
  5. 5.
    Grigorenko, L.V., Johnson, R.C., Mukha, I.G., Thomson, I.J., Zhukov, M.V.: Two-proton radioactivity and three-body decay: general problems and theoretical approach. Phys. Rev. C 64, 054002/1–12 (2001)Google Scholar
  6. 6.
    Grigorenko, L.V., Zhukov, M.V.: Two-proton radioactivity and threebody decay II. Exploratory studies of lifetimes and correlations. Phys. Rev. C 68, 054005/1–15 (2003)Google Scholar
  7. 7.
    Grigorenko, L.V., Zhukov, M.V.: Two-proton radioactivity and three-body decay. III. Integral formulas for decay widths in a simplified semianalytical approach. Phys. C 76, 014008/1–17 (2007)Google Scholar
  8. 8.
    Grigorenko, L.V., Zhukov, M.V.: Two-proton radioactivity and three-body decay. IV. Connection to quasiclassical formulation. Phys. C 76, 014009/1–9 (2007)Google Scholar
  9. 9.
    Kryger, R.A., et. al.: Two-proton emission from the ground state of 12O. Phys. Rev. Lett. 74, 860–863 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    Barker, F.C.: Width of the 12O ground state. Phys. Rev. C 59, 535–538 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    Barker, F.C.: 12O Ground-state decay by 2He emission. Phys. Rev. C 63, 047303/1–2 (2001)Google Scholar
  12. 12.
    Goméz del Campo, J., et. al.: Decay of a resonance in 18Ne by the simultaneous emission of two protons. Phys. Rev. Lett. 86, 43–46 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    Brown, B.A., Barker, F.C., Millener, D.J.: Di-proton decay of the 6.15 MeV 1 state in 18Ne. Phys. Rev. C 61, 051309(R)/1–3 (2002)Google Scholar
  14. 14.
    Brown, B.A., Barker, F.C., Millener, D.J.: Di-proton decay of the 6.15 MeV 1 states in 18Ne. Phys. Rev. C 67, 041304(R)/1–3 (2003)Google Scholar
  15. 15.
    Bennaceur, K., Nowacki, F., Okolowicz, J., Ploszajczak, M.: Analysis of the 16O(pγ)17F capture reaction using the shell model embedded in the continuum. Nucl. Phys. A 671, 203–232 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    Okolowicz, J., Ploszajczak, M., Rotter, I.: Dynamics of quantum systems emebeded in continuum. Phys. Rep. 374, 271-383 (2003)MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. 17.
    Rotter, I., Okolowicz, J., Ploszajczak, M.: Microscopic theory of the two-proton radioactivity. Phys. Rev. Lett. 95, 042503/1–4 (2005)Google Scholar
  18. 18.
    Zhukov, M.V., et.al.: Bound state properties of borromean hallo nuclei: 6He and 11Li. Phys. Rep. 231, 153–199 (1993)ADSCrossRefGoogle Scholar
  19. 19.
    Grigorenko, L.V., Johnson, R.C., Mukha, I.G., Thomson, I.J., Zhukov, M.V.: Theory of two-proton radioactivity with application to 19Mg and 48Ni. Phys. Rev. Lett. 85, 22–25 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    Ramayya, A.V., et al.: Cold (neutronless) α ternary fission of 252Cf. Phys. Rev. C 57, 2370–2374 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    Hamilton, J.H., et al.: New cold and ultra hot binary and cold ternary spontaneous fission mopdes for 252Cf and new band structures with gammasphere. Prog. Part. Nucl. Phys. 38, 273-287 (1997)MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Ramayya, A.V., et al.: Observation of 10Be emission in the cold ternary spontaneous fission of 252Cf. Phys. Rev. Lett. 81, 947–950 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    Ter-Akopian, G.M.: Angular Distribution in the Cold Fission of 252Cf. Seminar, 6 May 2002, Physics Department, Frankfurt/Main University (2002)Google Scholar
  24. 24.
    Florescu, A., Săndulescu, A., Delion, D.S., Hamilton, J.H., Ramayya, A., Greiner, W.: Preformation probabilities for light ternary particles in cold (neutronless) fission of 252Cf. Phys. Rev. C 61, 051602(R)/1–4 (2000)Google Scholar
  25. 25.
    Delion, D.S., Florescu, A., Săndulescu, A.: Microscopic description of the cold α and 10Be ternary fission yields of 252Cf in spheroidal coordinates. Phys. Rev. C 63, 044312/1–10 (2001)Google Scholar
  26. 26.
    Delion, D.S., Săndulescu, A., Greiner, W.: Anisotropy in the ternary cold fision. J. Phys. G 29, 317–336 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    Delion, D.S., Săndulescu, A., Greiner, W.: Self-consistent description of the ternary cold fission: tri-rotor mode. J. Phys. G 28, 2921–2938 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    Delion, D.S., Săndulescu, A., Mişicu, S., Cârstoiu, F., Greiner, W.: Double fine structure in binary cold fission. J. Phys. G 28, 289–306 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    Möller, P., Nix, R.J., Myers, W.D., Swiatecki, W.: Nuclear ground-state masses and deformations. At. Data Nucl. Data Tables 59, 185–381 (1995)ADSCrossRefGoogle Scholar
  30. 30.
    Delion, D.S., Săndulescu, A., Mişicu, S., Cârstoiu, F., Greiner, W.: Quasimolecular resonances in the binary cold fission of 252Cf. Phys. Rev. C 64, 041303/1–5 (2001)Google Scholar
  31. 31.
    Dao Khoa, T.: α-nucleus potential in the double-folding model. Phys. Rev. C 63, 034007/1–15 (2001)Google Scholar
  32. 32.
    Thomas, R.G.: A formulation of the theory of alpha-particle decay from time-independent equations. Prog. Theor. Phys. 12, 253–264 (1954)ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Theoretical Physics DepartmentInstitute of Physics and Nuclear EngineeBucharestRomania

Personalised recommendations