Fine Structure of Emission Processes

  • Doru S. DelionEmail author
Part of the Lecture Notes in Physics book series (LNP, volume 819)


We describe the fine structure of the α-decay and proton emission by considering rotational and vibrational degrees of freedom of emitted fragments. Axial and triaxial symmetry is considered. Then we analyze the most general case, namely the double fine structure in the binary cold fission process


Decay Width Coulomb Barrier Daughter Nucleus Couple Channel Spectroscopic Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Akovali, Y.A.: Review of alpha-decay data from double-even nuclei. Nucl. Data Sheets 84, 1–114 (1998)Google Scholar
  2. 2.
    Delion, D.S., Peltonen, S., Suhonen, J.: Systematics of the α-decay to rotational states. Phys. Rev. C 73, 014315/1–10 (2006)Google Scholar
  3. 3.
    Rasmussen, J.O.: Alpha-decay barrier penetrabilities with an exponential nuclear potential: even–even nuclei. Phys. Rev. 113, 1593–1598 (1959)ADSCrossRefGoogle Scholar
  4. 4.
    Xu, C., Ren, Z.: α Transitions to coexisting 0+ states in Pb and Po isotopes. Phys. Rev. C 75, 044301/1–5 (2007)Google Scholar
  5. 5.
    Wang, Y.Z., Zhang, H.F., Dong, J.M., Royer, G.: Branching ratios of α decay to excited states in even-even nuclei. Phys. Rev. C 79,014316/1–5 (2009)Google Scholar
  6. 6.
    Rasmussen, J.O., Segal, B.: Alpha decay of spheroidal nuclei. Phys. Rev. 103, 1298–1308 (1956)ADSCrossRefGoogle Scholar
  7. 7.
    Chasman, R.R., Rasmussen, J.O.: Alpha decay of deformed even–even nuclei. Phys. Rev. 112, 512–518 (1958)ADSCrossRefGoogle Scholar
  8. 8.
    Săndulescu, A., Iosifescu, M.: On favoured alpha transitions. Nucl. Phys. 26, 209–216 (1961)CrossRefGoogle Scholar
  9. 9.
    Rauscher, E.A., Rasmussen, J.O., Harada, K.: Coupled-channel, alpha decay rate theory applied to 212mPo. Nucl. Phys. A 94, 33–51 (1967)ADSCrossRefGoogle Scholar
  10. 10.
    Soinski, A.J., Rasmussen, J.O., Rausher, E.A., Raich, D.G.: Coupled-channel α-decay theory for odd-mass nuclei: 283Es and 255Fm. Nucl. Phys. A 291, 386–400 (1977)ADSCrossRefGoogle Scholar
  11. 11.
    Radi, H.M.A., Shihab-Eldin, A.A., Rasmussen, J.O., Oliveira L.F.: Relation of α-decay rotational signatures to nuclear deformation changes. Phys. Rev. Lett. 41, 1444–1446 (1978)ADSCrossRefGoogle Scholar
  12. 12.
    Fröman, P.P.: Alpha decay from deformed nuclei. Mat. Fys. Skr. Dan. Vid. Selsk. 1, 3 (1957)Google Scholar
  13. 13.
    Richards, J.D., Berggren, T., Bingham, C.R., Nazarewicz, W., Wauters, J.: α Decay and shape coexistence in the α-rotor model. Phys. Rev. C 56, 1389–1397 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    Neu, R., Hoyler, F.: Isoscalar transition rates from inelastic alpha scattering. Phys. Rev. C 46, 208–219 (1992)ADSCrossRefGoogle Scholar
  15. 15.
    Abele, H., Staudt, G.: α-16O and α-15N Optical potentials in the range between 0 and 150 MeV. Phys. Rev. C 47, 742–756 (1993)ADSCrossRefGoogle Scholar
  16. 16.
    Dao Khoa, T.: α-Nucleus potential in the double-folding model. Phys. Rev. C 63, 034007/1–15 (2001)Google Scholar
  17. 17.
    Basu, D.N.: Folding model analysis of alpha radioactivity. J. Phys. G 29, 2079–2085 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    Ni, D., Ren, Z.: Systematic calculation of α decay within a generalized density-dependent cluster model. Phys. Rev. C 81, 024315/1–10 (2010)Google Scholar
  19. 19.
    Gambhir, Y.K., Bhagwat, A., Gupta, M., Jain, A.K.: α Radioactivity of superheavy nuclei. Phys. Rev. C 68, 044316/1–6 (2003)Google Scholar
  20. 20.
    Bertsch, G., Borysowicz, J., McManus, H., Love, W.G.: Interactions for inelastic scattering derived from realistic potentials. Nucl. Phys. A 284, 399–419 (1977)ADSCrossRefGoogle Scholar
  21. 21.
    Möller, P., Nix, R.J., Myers, W.D., Swiatecki, W.: Nuclear ground-state masses and deformations. At. Data Nucl. Data Tables 59, 185–381 (1995)ADSCrossRefGoogle Scholar
  22. 22.
    Satchler, G.R., Love, W.G.: Folding model potentials from realistic interactions for heavy-ion scattering. Phys. Rep. 55, 183–254 (1979)ADSCrossRefGoogle Scholar
  23. 23.
    Delion, D.S., Săndulescu, A., Greiner, W.: Evidence for α clustering in heavy and superheavy nuclei. Phys. Rev. C 69, 044318/1–19 (2004)Google Scholar
  24. 24.
    Delion, D.S., Liotta, R.J., Wyss, R.: Theories of proton emission. Phys. Rep. 424, 113–174 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    Săndulescu, A., Dumitrescu, O.: Alpha decay to vibrational states. Phys. Lett. 19, 404–407 (1965)ADSCrossRefGoogle Scholar
  26. 26.
    Săndulescu, A., Dumitrescu, O.: Alpha decay and the structure of β-vibrational states. Phys. Lett. B 24, 212–216 (1967)ADSCrossRefGoogle Scholar
  27. 27.
    Cristu, M.I., Dumitrescu, O., Pyatov, N.I., Săndulescu, A.: Alpha decay and the structure of the Kπ = 0+ states in the Th–U region. Nucl. Phys. A 130, 31–40 (1969)ADSCrossRefGoogle Scholar
  28. 28.
    Delion, D.S., Florescu, A., Huise, M., Wauters, J., Van Duppen, P., ISOLDE Collaboration, Insolia, A., Liotta, R.J.: Microscopic description of alpha decay to intruder 0+ states in Pb, Po, Hg and Pt isotopes. Phys. Rev. Lett. 74, 3939–3942 (1995)ADSCrossRefGoogle Scholar
  29. 29.
    Delion, D.S., Florescu, A., Huise, M., Wauters, J., Van Duppen, P., ISOLDE Collaboration, Insolia, A., Liotta, R.J.: Alpha decay as a probe for phase transitions in nuclei. Phys. Rev. C 54, 1169–1176 (1996)ADSCrossRefGoogle Scholar
  30. 30.
    Karlgren, D., Liotta, R.J., Wyss, R., Huyse, M., Van de Vel, K., Van Duppen, P.: α-Decay hindrance factors: a probe of mean field wave functions. Phys. Rev. C 73, 064304/1–10 (2006)Google Scholar
  31. 31.
    Wauters, J., et al.: The alpha-branching ratios of the 188,190,192Pb isotopes. Z. Phys. A 342, 277–282 (1992)ADSCrossRefGoogle Scholar
  32. 32.
    Wauters, J., et al.: Fine structure in the α decay of 202Rn. Observation of a low-lying state in 198Po. Z. Phys. A 344, 29–33 (1992)ADSCrossRefGoogle Scholar
  33. 33.
    Wauters, J., et al.: Alpha-decay study of 188Pb and 180–182Hg. Z. Phys. A 345, 21–27 (1993)ADSCrossRefGoogle Scholar
  34. 34.
    Wauters, J., et al.: α Decay properties of neutron-defficient Polonium and Radon nuclei. Phys. Rev. C 47, 1447–1454 (1993)ADSCrossRefGoogle Scholar
  35. 35.
    Wauters, J., et al.: Alpha decay of 186Pb and 184Hg: the influence of mising of 0+ states on α-decay transition probabilities. Phys. Rev. C 50, 2768–2773 (1994)ADSCrossRefGoogle Scholar
  36. 36.
    Wauters, J., et al.: Fine structure in the alpha decay of even–even nuclei as an experimental proof for the stability of the Z = 82 magic shell at the very-deficient neutron side. Phys. Rev. Lett. 72, 1329–1332 (1994)ADSCrossRefGoogle Scholar
  37. 37.
    Bijnens, N., et al.: Intruder states and the onset of deformation in the neutron-deficient even–even polonium isotopes. Phys. Rev. Lett. 75, 4571–4574 (1995)ADSCrossRefGoogle Scholar
  38. 38.
    Allatt, R.G., et al.: Fine Structure in 192Po α decay and shape coexistence in 188Pb. Phys. Lett. B 437, 29–34 (1998)ADSCrossRefGoogle Scholar
  39. 39.
    Liang, C.F., et al.: Alpha decay of 231U to levels in 227Th. Phys. Rev. C 49, 2230–2232 (1994)ADSCrossRefGoogle Scholar
  40. 40.
    Delion, D.S., Insolia, A., Liotta, R.J.: Pairing correlations and quadrupole deformation effects on the 14C decay. Phys. Rev. Lett. 78 4549–4552 (1997)ADSCrossRefGoogle Scholar
  41. 41.
    Delion, D.S., Săndulescu, A., Mişicu, S., Cârstoiu, F., Greiner, W.: Quasimolecular resonances in the binary cold fission of 252Cf. Phys. Rev. C 64, 041303(R)/1–5 (2001)Google Scholar
  42. 42.
    Peltonen, S., Delion, D.S., Suhonen, J.: Systematics of the alpha decay to vibrational states. Phys. Rev. C 71, 044315/1–9 (2005)Google Scholar
  43. 43.
    Peltonen, S., Delion, D.S., Suhonen, J.: Folding description of the fine structure of alpha decay to 2+ vibrational and transitional states. Phys. Rev. C 75, 054301/1–9 (2007)Google Scholar
  44. 44.
    Carstoiu, F., Lombard, R.J.: A new method of evaluating folding type integrals. Ann. Phys. (N.Y.) 217, 279–303 (1992)MathSciNetADSCrossRefGoogle Scholar
  45. 45.
    Delion, D.S., Suhonen, J.: Microscopic anharmonic vibrator approach for beta decays. Nucl. Phys. A 781, 88–103 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    Mohr, P.: α-Nucleus potentials, α-decayhalf-lives, and shell closures for superheavy nuclei. Phys. Rev. C 73, 031301(R)/1–5 (2006)Google Scholar
  47. 47.
    Lotti, P., Maglione, E., Catara, F., Insolia, A.: Surface clustering and two-nucleon pick-up in Samarium Isotopes. Europhys. Lett. 6, 125–129 (1988)ADSCrossRefGoogle Scholar
  48. 48.
    Hagino, K.: Role of dynamical particle-core vibration coupling in reconciliation of the d3/2 puzzle for spherical proton emitters. Phys. Rev. C 64, 041304(R)/1–5 (2001)Google Scholar
  49. 49.
    Davids, C.N., Esbensen, H.: Particle-vibration coupling in proton decay of near-spherical nuclei. Phys. Rev. C 64, 034317/1–7 (2001)Google Scholar
  50. 50.
    Semmens, P.B.: Proton emission from spherical and near-spherical nuclei. Nucl. Phys. A 682, 239c–246c (2001)ADSCrossRefGoogle Scholar
  51. 51.
    Esbensen, H., Davids, C.N.: Coupled-channels treatment of deformed proton emitters. Phys. Rev. C 63, 014315/1–13 (2000)Google Scholar
  52. 52.
    Ferreira, L.S., Maglione, E.: 151Lu: Spherical or deformed? Phys. Rev. C 61, 021304(R)/1–3 (2000)Google Scholar
  53. 53.
    Ter-Akopian, G.M., et al.: Neutron multiplicities and yields of correlated Zr–Ce and Mo–Ba fragment pairs in spontaneous fission of 252Cf. Phys. Rev. Lett. 73, 1477–1480 (1994)ADSCrossRefGoogle Scholar
  54. 54.
    Săndulescu, A., Florescu, A., Carstoiu, F., Greiner, W., Hamilton, J.H., Ramayya, A.V., Babu, B.R.S.: Isotopic yields in the cold fission of 252Cf. Phys. Rev. C 54, 258–265 (1996)ADSCrossRefGoogle Scholar
  55. 55.
    Wu, S.-C., et al.: New determination of the Ba–Mo yield matrix for 252Cf. Phys. Rev. C 62, 041601(R)/1–4 (2000)Google Scholar
  56. 56.
    Ramayya, A.V., et al.: Binary and ternary fission studies with 252Cf. Progr. Part. Nucl. Phys. 46, 221–229 (2001)ADSCrossRefGoogle Scholar
  57. 57.
    Jandel, M., et al.: Gamma-ray multiplicity distribution in ternary fission of 252Cf. J. Phys. G 28, 2893–2905 (2002)ADSCrossRefGoogle Scholar
  58. 58.
    Hamilton, J.H., et al.: Yad. Fiz. 65, 677 (2002)Google Scholar
  59. 59.
    Hamilton, J.H., et al.: Phys. At. Nucl. 65, 695 (2002)CrossRefGoogle Scholar
  60. 60.
    Săndulescu, A., Greiner, W.: J. Phys. G 3, L189 (1977)CrossRefGoogle Scholar
  61. 61.
    Săndulescu, A., Greiner, W.: Cluster decays. Rep. Prog. Phys. 55, 1423–1481 (1992)ADSCrossRefGoogle Scholar
  62. 62.
    Möller, P., Nix, J.R.: Macroscopic poetential-energy surfaces for symmetric fission and heavy-ion reactions. Nucl. Phys. A 272, 502–532 (1976)ADSCrossRefGoogle Scholar
  63. 63.
    Cârjan, N., Sierk, A.J., Nix, J.R.: Effect of dissipation on ternary fission in very heavy nuclear systems. Nucl. Phys. A 452, 381–397 (1986)ADSCrossRefGoogle Scholar
  64. 64.
    Mignen, J., Royer, G.: A geometric model for ternary fission. J. Phys. G 16 L227–L232 (1990)ADSCrossRefGoogle Scholar
  65. 65.
    Gönnenwein, F., Börsig, B.: The model of cold fission. Nucl. Phys. A 530, 27–57 (1991)ADSCrossRefGoogle Scholar
  66. 66.
    Knitter, H.-H., Hambsch, F.-J., Buditz-Jorgensen, C.: Nuclear mass and charge distribution in the cold region of the spontaneous fission of 252Cf. Nucl. Phys. A 536, 221–259 (1992)ADSCrossRefGoogle Scholar
  67. 67.
    Royer, G., Mignen, J.: Binary and ternary fission of hot rotating nuclei. J. Phys. G 18, 1781–1792 (1992)ADSCrossRefGoogle Scholar
  68. 68.
    Royer, G., Haddad, F., Mignen, J.: On nuclear ternary fission. J. Phys. G 18, 2015–2026 (1992)ADSCrossRefGoogle Scholar
  69. 69.
    Săndulescu, A., Mişicu, S., Carstoiu, F., Greiner, W.: Cold fission modes in 252Cf. Fiz. Elem. Chastits Az. Yadra 30, 908–953 (1999)Google Scholar
  70. 70.
    Săndulescu, A., Mişicu, S., Carstoiu, F., Greiner, W.: Phys. Part. Nucl. 30, 386 (1999)CrossRefGoogle Scholar
  71. 71.
    Săndulescu, A., Carstoiu, F., Bulboacă, I., Greiner, W.: Cluster decsription of cold (neutronless) α ternary fission of 252Cf. Phys. Rev. C 60, 044613/1–13 (1999)Google Scholar
  72. 72.
    Carstoiu, F., Bulboacă, I., Săndulescu, A., Greiner, W.: Half-lives of trinuclear molecules. Phys. Rev. C 61, 044606/1–7 (2000)Google Scholar
  73. 73.
    Săndulescu, A., Mişicu, Ş., Carstoiu, F., Florescu, A., Greiner, W.: Role of the higher static deformations of fragments in the cold binary fission of 252Cf. Phys. Rev. C 58, 2321–2328 (1998)CrossRefGoogle Scholar
  74. 74.
    Delion, D.S., Săndulescu, A., Greiner W.: Probing mean field of neutron rich nuclei by cold fission. Phys. Rev. C 68, 041303(R)/1–5 (2003)Google Scholar
  75. 75.
    Mişicu, Ş., Săndulescu, A., Greiner, W.: Coupling between fragment radial motion and the transversal degrees of freedom in cold fission. Phys. Rev. C 64, 044610/1–10 (2001)Google Scholar
  76. 76.
    Delion, D.S., Săndulescu, A., Mişicu, Ş., Cârstoiu, F., Greiner, W.: Double fine structure in binary cold fission. J. Phys. G 28, 289–306 (2009)ADSCrossRefGoogle Scholar
  77. 77.
    Specht, H.J.: Nuclear fission. Rev. Mod. Phys. 46, 773–787 (1974)ADSCrossRefGoogle Scholar
  78. 78.
    Mirea, M., Delion, D.S., Săndulescu, A.: Microscopic cold fission yields of 252Cf. Phys. Rev. C 81, 044317/1–4 (2010)Google Scholar
  79. 79.
    Mizutori, S., Dobaczewski, J., Lalazissis, G.A., Nazarewicz, W., Reinhard, P.-G.: Nuclear skins and halos in the mean field theory. Phys. Rev. C 61, 044326/1–14 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Theoretical Physics DepartmentInstitute of Physics and Nuclear EngineeBucharest-Magurele Romania

Personalised recommendations