Binary Emission Processes

  • Doru S. DelionEmail author
Part of the Lecture Notes in Physics book series (LNP, volume 819)


We introduce the main tool to describe emission processes, namely Gamow resonances. The reduced width and penetrabilitry are defined. Then we analyze the experimental material in terms of the Geiger–Nuttall law for different emission processes. We introduce the double folding procedure, as the most general method to compute the inter-fragment phenomenological potential. The problem how the binary system is born from the initial nucleus is described in terms of the phenomenological spectroscopic factor, defined as the ratio between computed and experimental half lives. It turns out, that half lives of α-decays or heavy cluster emission processes, predicted by phenomenological potentials describing scattering data, are too short. This feature is a signature that such clusters do not exist as free components on the nuclear surface.


Decay Width Emission Process Coulomb Barrier Fragmentation Potential Proton Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Unger, H.-J.: On the factorisation of the wave function and the green function in the region of isolated poles of the S-function. Nucl. Phys. A 104, 564–576 (1967)ADSCrossRefGoogle Scholar
  2. 2.
    Gamow, G.: Zur Quantentheorie des Atomkernes. Z. Phys. 51, 204–212 (1928)ADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Condon, E.U., Gurwey, R.W.: Wave mechanics and radioactive disintegration. Nature 22, 439 (1928)Google Scholar
  4. 4.
    Civitarese, O., Gadella, M.: Physical and mathematical aspects of Gamow States. Phys. Rep. 396, 41–113 (2004)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions. Dover Publications Inc., New York (1983)Google Scholar
  6. 6.
    Lane, A.M., Thomas, R.G.: R-Matrix theory of nuclear reactions. Rev. Mod. Phys. 30, 257–353 (1958)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Vertse, T., Liotta, R.J., Maglione, E.: Exact and approximate calculation of giant resonances. Nucl. Phys. A 584, 13–34 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    Berggren,T.: The use of resonant states in Eigenfunction expansions of scattering and reaction amplitudes. Nucl. Phys. A 109, 265–287 (1968)ADSCrossRefGoogle Scholar
  9. 9.
    Berggren, T.: On the interpretation of cross sections for production of resonant final states. Phys. Lett. B 73, 389–392 (1978)ADSCrossRefGoogle Scholar
  10. 10.
    Breit, G., Wigner, E.P.: Capture of slow neutrons. Phys. Rev. 49, 519–531 (1936)ADSzbMATHCrossRefGoogle Scholar
  11. 11.
    Teichmann, T., Wigner, E.P.: Sum rules in the dispersion theory of nuclear reactions. Phys. Rev. 87, 123–135 (1952)ADSzbMATHCrossRefGoogle Scholar
  12. 12.
    Thomas, R.G.: A formulation of the theory of alpha-particle decay from time-independent equations. Prog. Theor. Phys. 12, 253–264 (1954)ADSzbMATHCrossRefGoogle Scholar
  13. 13.
    Ixaru, L., Rizea, M., Vertse, T.: Piecewiese perturbation methods for calculating Eigensolutions of complex optical potential. Comput. Phys. Commun. 85, 217–230 (1995)ADSzbMATHCrossRefGoogle Scholar
  14. 14.
    Vertse, T., Pál, K.F., Balogh, A.: GAMOW, a program for calculating the resonant state solution of the Radial Schrödinger Equation in an arbitrary optical potential. Comput. Phys. Commun. 27, 309–322 (1982)ADSCrossRefGoogle Scholar
  15. 15.
    Taylor, J.R.: Scattering Theory. Wiley, New York (1972)Google Scholar
  16. 16.
    Geiger, H., Nuttall, J.M.: The ranges of the α particles from various substances and a relation between range and period of transformation. Philos. Mag. 22, 613–621 (1911)Google Scholar
  17. 17.
    Geiger, H.: Reichweitemessungen an α-Strahlen. Z. Phys. 8, 45–57 (1922)ADSCrossRefGoogle Scholar
  18. 18.
    Sonzogni, A.A.: Proton radioactivity in Z > 50 nuclides. Nucl. Data Sheets 95, 1–48 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    Delion, D.S., Liotta, R.J., Wyss, R.: Theories of proton emission. Phys. Rep. 424, 113–174 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    Delion, D.S., Liotta, R.J., Wyss, R.: Systematics of proton emission. Phys. Rev. Lett. 96, 072501/1–4 (2006)Google Scholar
  21. 21.
    Goldansky, V.I.: On neutron deficient isotopes of light nuclei and the phenomena of proton and two-proton radioactivity. Nucl. Phys. 19, 482–495 (1960)CrossRefGoogle Scholar
  22. 22.
    Viola, V.E., Seaborg, G.T.: Nuclear systematics of the heavy elements-II. J. Inorg. Nucl. Chem. 28, 741–761 (1966)CrossRefGoogle Scholar
  23. 23.
    Hatsukawa, Y., Nakahara, H., Hoffman, D.C.: Systematics of alpha decay half lives. Phys. Rev. C 42, 674–682 (1990)ADSCrossRefGoogle Scholar
  24. 24.
    Brown, B.A.: Simple relation for alpha decay half-lives. Phys. Rev. C 46, 811–814 (1992)ADSCrossRefGoogle Scholar
  25. 25.
    Denisov, V.Y., Khudenko, A.A.: α-Decay half-lives: empirical relations. Phys. Rev. C 79, 054614/1–5 (2009)Google Scholar
  26. 26.
    Poenaru, D.N., Nagame, Y., Gherghescu, R.A., Greiner, W.: Systematics of cluster decay modes. Phys. Rev. C 65, 054308/1–6 (2002)Google Scholar
  27. 27.
    Qi, C., Xu, F.R., Liotta, R.J., Wyss, R.: Universal decay law in charged-particle emission and exotic cluster radioactivity. Phys. Rev. Lett. 103, 072501/1–4 (2009)Google Scholar
  28. 28.
    Ren, Z., Xu, C., Wang, Z.: New perspective on complex cluster radioactivity of heavy nuclei. Phys. Rev. C 70, 034304/1–8 (2004)Google Scholar
  29. 29.
    Mirea, M., Delion, D.S., Săndulescu, A.: Microscopic cold fission yields of 252Cf. Phys. Rev. C 81, 044317/1–4 (2010)Google Scholar
  30. 30.
    Delion, D.S.: Universal decay rule for reduced widths. Phys. Rev. C 80, 024310/1–7 (2009)Google Scholar
  31. 31.
    Blendowske, R., Fliessbach, T., Walliser, H.: From α-decay to exotic decays—a unified model. Z. Phys. A 339, 121–128 (1991)ADSCrossRefGoogle Scholar
  32. 32.
    Medeiros, E.L., Rodrigues, M.M.N., Duarte, S.B., Tavares, O.A.P.: Systematics of half-lives for proton radioactivity. Eur. J. Phys. A 34, 417–427 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    Lovas, R.G., Liotta, R.J., Insolia, A., Varga, K., Delion, D.S.: Microscopic theory of cluster radioactivity. Phys. Rep. 294, 265–362 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    Carstoiu, F., Lombard, R.J.: A new method of evaluating folding type integrals. Ann. Phys. (NY) 217, 279–303 (1992)MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    Bertsch, G., Borysowicz, J., McManus, H., Love, W.G.: Interactions for inelastic scattering derived from realistic potentials. Nucl. Phys. A 284, 399–419 (1977)ADSCrossRefGoogle Scholar
  36. 36.
    Dao Khoa, T.: α-Nucleus potential in the double-folding model. Phys. Rev. C 63, 034007/1–15 (2001)Google Scholar
  37. 37.
    Mang, H.J., Rasmussen, J.O.: Mat. Fys. Skr. Dan. Vid. Selsk. 2(3), (1962)Google Scholar
  38. 38.
    Mang, H.J.: Alpha decay. Ann. Rev. Nucl. Sci. 14, 1–28 (1964)ADSCrossRefGoogle Scholar
  39. 39.
    Poggenburg, J.K., Mang, H.J., Rasmussen, J.O.: Theoretical alpha-decay rates for the Actinide region. Phys. Rev. 181, 1697–1719 (1969)ADSCrossRefGoogle Scholar
  40. 40.
    Delion, D.S., Insolia, A., Liotta, R.J.: New single particle basis for microscopic description of decay processes. Phys. Rev. C 54, 292–301 (1996)ADSCrossRefGoogle Scholar
  41. 41.
    Delion, D.S., Insolia, A., Liotta, R.J.: Pairing correlations and quadrupole deformation effects on the 14C decay. Phys. Rev. Lett. 78, 4549–4552 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Theoretical Physics DepartmentInstitute of Physics and Nuclear EngineeBucharest- MagureleRomania

Personalised recommendations