Advertisement

Selfconsistent Emission Theory

  • Doru S. DelionEmail author
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 819)

Abstract

In a selfconsistent emission theory, the product between the reduced width and penetrability in the decay width should not depend upon the matching radius. This condition is not a trivial one in the microscopic theory and this point is extensively discussed in this chapter. We show that the standard shell model approach is not able to satisfy this property along neutron chains. Only the inclusion of an α-cluster part, depending exponentially upon the Somerfeld parameter, is able to cure this deficiency

Keywords

Wave Function Decay Width Radial Wave Function Quadrupole Deformation Total Decay Width 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Fliessbach, T., Mang, H.J., Rasmussen, J.O.: The reduced Width amplitude in the reaction theory for composite particles. Phys. Rev. C 13, 1318–1323 (1976)ADSCrossRefGoogle Scholar
  2. 2.
    Tonozuka, I., Arima, A.: Surface α-clustering and α-decays of 211Po. Nucl. Phys. A 323, 45–60 (1979)ADSCrossRefGoogle Scholar
  3. 3.
    Fliessbach, T., Okabe, S.: Surface alpha-clustering in the lead region. Z. Phys. A 320, 289–294 (1985)ADSCrossRefGoogle Scholar
  4. 4.
    Janouch, F.A., Liotta, R.: Influence of α-cluster formation on α decay. Phys. Rev. C 27, 896–898 (1983)ADSCrossRefGoogle Scholar
  5. 5.
    Dodig-Crnkovic, G., Janouch, F.A., Liotta, R.J.: The continuum and the alpha-particle formation. Phys. Scr. 37, 523–525 (1988)CrossRefGoogle Scholar
  6. 6.
    Lenzi, S.M., Dragun, O., Maqueda, E.E., Liotta, R.J., Vertse, T.: Description of alpha clustering including continuum configurations. Phys. Rev. C 48, 1463–1465 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    Delion, D.S., Suhonen, J.: Microscopic description of α-like resonances. Phys. Rev. C 61, 024304/1–12 (2000)Google Scholar
  8. 8.
    Insolia, A., Curutchet, P., Liotta, R.J., Delion, D.S.: Microscopic description of alpha decay of deformed nuclei. Phys. Rev. C 44, 545–547 (1991)ADSCrossRefGoogle Scholar
  9. 9.
    Delion, D.S., Insolia, A., Liotta, R.J.: Anisotropy in alpha decay of odd-mass deformed nuclei. Phys. Rev C 46, 884–888 (1992)ADSCrossRefGoogle Scholar
  10. 10.
    Delion, D.S., Insolia A., Liotta, R.J.: Alpha widths in deformed nuclei: microscopic approach. Phys. Rev C 46, 1346–1354 (1992)ADSCrossRefGoogle Scholar
  11. 11.
    Delion, D.S., Insolia, A., Liotta, R.J.: Microscopic description of the anisotropy in alpha decay. Phys. Rev. C 49, 3024–3028 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    Delion, D.S., Insolia, A., Liotta, R.J.: New single particle basis for microscopic description of decay processes. Phys. Rev. C 54, 292–301 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    Dobaczewski, J., Nazarewicz, W., Werner, T.R., Berger, J.F., Chinn, C.R., Decharge, J.: Mean-field description of ground-state properties of drip-line nuclei: pairing and continuum effects. Phys. Rev. C 53, 2809–2840 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    Berggren, T.: The use of resonant states in eigenfunction expansions of scattering and reaction amplitudes. Nucl. Phys. A 109, 265–287 (1968)ADSCrossRefGoogle Scholar
  15. 15.
    Vertse, T., Curuchet, P., Civitarese, O., Ferreira, L.S., Liotta, R.J.: Application of gamow resonances to continuum nuclear spectra. Phys. Rev. C 37, 876–879 (1988)ADSCrossRefGoogle Scholar
  16. 16.
    Curuchet, P., Vertse, T., Liotta, R.J.: Resonant random phase approximation. Phys. Rev. C 39, 1020–1031 (1989)ADSCrossRefGoogle Scholar
  17. 17.
    Vertse, T., Liotta, R.J., Maglione, E.: Exact and approximate calculation of giant resonances. Nucl. Phys. A 584, 13–34 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    Maglione, E., Ferreira, L.S., Liotta, R.J.:Nucleon decay from deformed nuclei. Phys. Rev. Lett. 81, 538–541 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    Varga, K., Lovas, R.G., Liotta, R.J.: Cluster-configuration shell model for alpha decay. Nucl. Phys. A 550, 421–452 (1992)ADSCrossRefGoogle Scholar
  20. 20.
    Rasmussen, J.O.: Alpha-decay barrier penetrabilities with an exponential nuclear potential: even-even Nuclei. Phys. Rev. 113, 1593–1598 (1959)ADSCrossRefGoogle Scholar
  21. 21.
    Akovali, Y.A.: Review of alpha-decay data from double-even nuclei. Nucl. Data Sheets 84, 1–114 (1998)Google Scholar
  22. 22.
    Dussel, G., Caurier, E., Zuker, A.P.: Mass predictions based on α-line systematics. At. Data Nucl. Data Tables 39, 205–211 (1988)ADSCrossRefGoogle Scholar
  23. 23.
    Gambhir, Y.K., Ring, P., Schuck, P.: Nuclei: A superfluid condensate of α particles? A study within the interacting-boson model. Phys. Rev. Lett. 51, 1235–1238 (1983)ADSCrossRefGoogle Scholar
  24. 24.
    Dussel, G.G., Fendrik, A.J., Pomar, C.: Microscopic description of four-body excitations in heavy nuclei. Phys. Rev. C 34, 1969–1973 (1986)ADSCrossRefGoogle Scholar
  25. 25.
    Dussel, G.G., Fendrik: Microscopic description of four-body excitations in heavy nuclei. Phys. Rev. C 34, 1097–1109 (1986)ADSCrossRefGoogle Scholar
  26. 26.
    Eisenberg, J.M., Greiner, W.: Nuclear Theory I, Nuclear Models. North-Holland, Amsterdam (1970)Google Scholar
  27. 27.
    Delion, D.S., Săndulescu, A.: Toward a self-consistent microscopis α-decay theory. J. Phys. G 28, 617–625 (2002)ADSGoogle Scholar
  28. 28.
    Schuck, P., Tohsaki, A., Horiuchi, H., Röpke, G.: In: Nazarewicz, W., Vretenar, D. (eds.) The Nuclear Many Body Problem 2001, p. 271. Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  29. 29.
    Spanier, L., Johansson, S.A.E.: A modified Bethe-Weizsäcker mass formula with deformation and shell corrections and few free parameters. At. Data Nucl. Data Tables 39, 259–264 (1988)ADSCrossRefGoogle Scholar
  30. 30.
    Delion, D.S., Liotta, R.J.: Microscopic description of α decay from superdeformed nuclei. Phys. Rev. C 58, 2073–2080 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    Fröman, P.P.: Alpha decay from deformed nuclei. Mat. Fys. Skr. Dan. Vid. Selsk. 1,no. 3 (1957)Google Scholar
  32. 32.
    Dudek, J., Szymanski, Z., Werner, T.: Woods-Saxon potential parameters optimized to the high spin spectra in the lead region. Phys. Rev. C 23, 920–925 (1981)ADSCrossRefGoogle Scholar
  33. 33.
    Bohr A., Mottelson, B.: Nuclear Structure. Benjamin, New York (1975)Google Scholar
  34. 34.
    Möller, P., Nix, R.J., Myers, W.D., Swiatecki, W.: Nuclear ground-state masses and deformations. At. Data Nucl. Data Tables 59, 185–381 (1995)ADSCrossRefGoogle Scholar
  35. 35.
    Buck, B., Merchand, A.C., Perez, S.M.: Half-lives of favoured alpha decays from nuclear ground states. At. Data Nucl. Data Tables 54, 53–73 (1993)ADSCrossRefGoogle Scholar
  36. 36.
    Oganessian, Y.T., et al.: Synthesis of superheavy nuclei in the 48Ca+244Pu reaction: 288114. Phys. Rev. C 62, 041604(R)/1–4 (2000)Google Scholar
  37. 37.
    Kaneko, K., Hasegawa, M.: Decay and proton–neutron correlations. Phys. Rev. C 67, 041306(R)/1–5 (2003).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Theoretical Physics DepartmentInstitute of Physics and Nuclear EngineeringBucharest, MagureleRomania

Personalised recommendations