Skip to main content

Mining Concept Similarities for Heterogeneous Ontologies

  • Conference paper
Book cover Advances in Data Mining. Applications and Theoretical Aspects (ICDM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6171))

Included in the following conference series:

Abstract

We consider the problem of discovering pairs of similar concepts, which are part of two given source ontologies, in which each concept node is mapped to a set of instances. The similarity measures we propose are based on learning a classifier for each concept that allows to discriminate the respective concept from the remaining concepts in the same ontology. We present two new measures that are compared experimentally: (1) one based on comparing the sets of support vectors from the learned SVMs and (2) one which considers the list of discriminating variables for each concept. These lists are determined using a novel variable selection approach for the SVM. We compare the performance of the two suggested techniques with two standard approaches (Jaccard similarity and class-means distance). We also present a novel recursive matching algorithm based on concept similarities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alpaydin, E.: Introduction to Machine Learning (Adaptive Computation and Machine Learning). The MIT Press, Cambridge (2004)

    Google Scholar 

  2. Bi, J., Bennett, K., Embrechts, M., Breneman, C., Song, M.: Dimensionality reduction via sparse support vector machines. JMLR 3, 1229–1243 (2003)

    Article  MATH  Google Scholar 

  3. Burges, C.: A tutorial on support vector machines for pattern recognition. DMKD 2, 121–167 (1998)

    Google Scholar 

  4. Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Learning to map between ontologies on the semantic web. In: WWW 2002, pp. 662–673. ACM Press, New York (2002)

    Chapter  Google Scholar 

  5. Euzenat, J., Shvaiko, P.: Ontology Matching, 1st edn. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  6. Goldstone, R.L., Rogosky, B.J.: Using relations within conceptual systems to translate across conceptual systems. Cognition 84(3), 295–320 (2002)

    Article  Google Scholar 

  7. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. JMLR 3(1), 1157–1182 (2003)

    Article  MATH  Google Scholar 

  8. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46(1-3), 389–422 (2002)

    Article  MATH  Google Scholar 

  9. Isaac, A., van der Meij, L., Schlobach, S., Wang, S.: An empirical study of instance-based ontology matching. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 253–266. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Joachims, T.: SVM light (2002), http://svmlight.joachims.org

  11. Lacher, M.S., Groh, G.: Facilitating the exchange of explicit knowledge through ontology mappings. In: Proceedings of the 14th FLAIRS Conf., pp. 305–309. AAAI Press, Menlo Park (2001)

    Google Scholar 

  12. Mitra, P., Wiederhold, G.: An ontology composition algebra. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies. Springer, Heidelberg (2004)

    Google Scholar 

  13. Noy, N., Musen, M.: Anchor-prompt: Using non-local context for semantic matching. In: IJCAI 2001, August 2001, pp. 63–70 (2001)

    Google Scholar 

  14. Rakotomamonjy, A.: Variable selection using svm based criteria. JMLR 3, 1357–1370 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Stumme, G., Maedche, A.: Fca-merge: Bottom-up merging of ontologies. In: IJCAI, pp. 225–230 (2001)

    Google Scholar 

  16. Todorov, K., Geibel, P., Kühnberger, K.-U.: Extensional ontology matching with variable selection for support vector machines. In: CISIS, pp. 962–968. IEEE Computer Society Press, Los Alamitos (2010)

    Google Scholar 

  17. Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T., Vapnik, V.: Feature Selection for SVMs. In: Advances in Neural Information Processing Systems, vol. 13, pp. 668–674. MIT Press, Cambridge (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Todorov, K., Geibel, P., Kühnberger, KU. (2010). Mining Concept Similarities for Heterogeneous Ontologies. In: Perner, P. (eds) Advances in Data Mining. Applications and Theoretical Aspects. ICDM 2010. Lecture Notes in Computer Science(), vol 6171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14400-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14400-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14399-1

  • Online ISBN: 978-3-642-14400-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics