Skip to main content

Comparison of Redundancy and Relevance Measures for Feature Selection in Tissue Classification of CT Images

  • Conference paper
Advances in Data Mining. Applications and Theoretical Aspects (ICDM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6171))

Included in the following conference series:

Abstract

In this paper we report on a study on feature selection within the minimum–redundancy maximum–relevance framework. Features are ranked by their correlations to the target vector. These relevance scores are then integrated with correlations between features in order to obtain a set of relevant and least–redundant features. Applied measures of correlation or distributional similarity for redunancy and relevance include Kolmogorov–Smirnov (KS) test, Spearman correlations, Jensen–Shannon divergence, and the sign–test. We introduce a metric called “value difference metric“ (VDM) and present a simple measure, which we call “fit criterion“ (FC). We draw conclusions about the usefulness of different measures. While KS–test and sign–test provided useful information, Spearman correlations are not fit for comparison of data of different measurement intervals. VDM was very good in our experiments as both redundancy and relevance measure. Jensen–Shannon and the sign–test are good redundancy measure alternatives and FC is a good relevance measure alternative.

This research was supported by the Spanish MEC Project “3D Reconstruction, classification and visualization of temporal sequences of bioimplant Micro-CT images“ (MAT-2005-07244-C03-03).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vyas, V.S., Rege, P.: Automated texture analysis with gabor filters. GVIP Journal 6(1), 35–41 (2006)

    Google Scholar 

  2. Saeys, Y., Inza, I. n., Larrañaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics (August 24, 2007)

    Google Scholar 

  3. Mundra, P.A., Rajapakse, J.C.: SVM-RFE with Relevancy and Redundancy Criteria for Gene Selection. In: Rajapakse, J.C., Schmidt, B., Volkert, L.G. (eds.) PRIB 2007. LNCS (LNBI), vol. 4774, pp. 242–252. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)

    Article  Google Scholar 

  5. Duch, W., Biesiada, J.: Feature selection for high-dimensional data: A kolmogorov-smirnov correlation-based filter solution. In: Kurzynski, M., Puchala, E., Wozniak, M., Zolnierek, A. (eds.) Advances in Soft Computing, pp. 95–104. Springer, Heidelberg (2005)

    Google Scholar 

  6. Novovicová, J., Malík, A., Pudil, P.: Feature selection using improved mutual information for text classification. In: International Workshop on Structural and Syntactic Pattern Recognition (2004)

    Google Scholar 

  7. Yu, L., Liu, H.: Efficient feature selection via analysis of relevance and redundancy. J. Mach. Learn. Res. 5, 1205–1224 (2004)

    MathSciNet  Google Scholar 

  8. Knijnenburg, T.A.: Selecting relevant and non-relevant features in microarray classification applications. Master’s thesis, Delft Technical University, Faculty of Electrical Engineering, 2628 CD Delft (2004)

    Google Scholar 

  9. Ding, C., Peng, H.: Minimum redundancy feature selection from microarray gene expression data. In: Second IEEE Computational Systems Bioinformatics Conference, pp. 523–529 (2003)

    Google Scholar 

  10. Zhang, Y., Callan, J., Minka, T.: Novelty and redundancy detection in adaptive filtering. In: SIGIR 2002: Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 81–88. ACM, New York (2002)

    Chapter  Google Scholar 

  11. Zhou, J., Peng, H.: Automatic recognition and annotation of gene expression patterns of fly embryos. Bioinformatics 23, 589–596 (2007)

    Article  Google Scholar 

  12. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques (2005)

    Google Scholar 

  13. Liu, X., Krishnan, A., Mondry, A.: An entropy-based gene selection method for cancer classification using microarray data. BMC Bioinformatics 6 (2005)

    Google Scholar 

  14. Yu, L., Liu, H.: Feature selection for high-dimensional data: A fast correlation-based filter solution. In: ICML, pp. 856–863 (2003)

    Google Scholar 

  15. Conover, W., Iman, R.: Rank Transformations as a Bridge Between Parametric and Nonparametric Statistics. AM. STAT. 35, 124–129 (1981)

    Article  MATH  Google Scholar 

  16. Wu, G., Twomey, S., Thiers, R.: Statistical Evaluation of Method-Comparison Data. Clinical Chemistry 21, 315–320 (1975)

    Google Scholar 

  17. Stanfill, C., Waltz, D.: Toward memory-based reasoning. Communications of the ACM 29(12), 1213–1228 (1986)

    Article  Google Scholar 

  18. Wilson, D.R., Martinez, T.R.: Improved heterogeneous distance functions. Journal of Artificial Intelligence Research 6(6), 1–34 (1997)

    MATH  MathSciNet  Google Scholar 

  19. Payne, T.R., Edwards, P.: Implicit feature selection with the value difference metric. In: European Conference on Artificial Intelligence, pp. 450–454 (1998)

    Google Scholar 

  20. Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information Theory 37, 145–151 (1991)

    Article  MATH  Google Scholar 

  21. Auffarth, B., López-Sánchez, M., Cerquides, J.: Hopfield Networks in Relevance and Redundancy Feature Selection Applied to Classification of Biomedical High-Resolution Micro-CT Images, Petra Perner (2008)

    Google Scholar 

  22. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm

  23. Burt, P.J., Adelson, E.H.: The laplacian pyramid as a compact image code. IEEE Trans. Communications 31, 532–540 (1983)

    Article  Google Scholar 

  24. Kovesi, P.D.: Edges are not just steps. In: Proceedings of the Fifth Asian Conference on Computer Vision, pp. 822–827 (2002)

    Google Scholar 

  25. Reinagel, P., Zador, A.: Natural scene statistics at center of gaze. Network: Comp. Neural Syst. 10, 341–350 (1999)

    Article  MATH  Google Scholar 

  26. Einhäuser, W., Kruse, W., Hoffman, K.P., König, P.: Differences of monkey and human overt attention under natural conditions. Vision Research 46(8-9), 1194–1209 (2006)

    Article  Google Scholar 

  27. Auffarth, B.: Classification of biomedical high-resolution micro-ct images for direct volume rendering. Master’s thesis, University of Barcelona, Barcelona, Spain (2007)

    Google Scholar 

  28. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1–30 (2006)

    MathSciNet  Google Scholar 

  29. Bollen, K., Bollen, K.: Structural equations with latent variables. Wiley, New York (1989)

    MATH  Google Scholar 

  30. Abdi, H.: The Kendall Rank Correlation Coefficient. In: Salkind, N.J. (ed.) Encyclopedia of Measurement and Statistics (2007)

    Google Scholar 

  31. Yilmaz, E., Aslam, J., Robertson, S.: A new rank correlation coefficient for information retrieval. In: Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval, pp. 587–594. ACM, New York (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Auffarth, B., López, M., Cerquides, J. (2010). Comparison of Redundancy and Relevance Measures for Feature Selection in Tissue Classification of CT Images. In: Perner, P. (eds) Advances in Data Mining. Applications and Theoretical Aspects. ICDM 2010. Lecture Notes in Computer Science(), vol 6171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14400-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14400-4_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14399-1

  • Online ISBN: 978-3-642-14400-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics