Skip to main content

Abstract

The cultivated chickpea (Cicer arietinum L.) produces hybrids with only two annual wild species, C. reticulatum and C. echinospermum. Cicer reticulatum is considered to be progenitor of cultivated chickpea. Both C. reticulatum and C. echinospermum, which are cross-compatible with the cultigen, are placed in the secondary gene pool. The remaining six annual wild Cicer species and the 34 perennial Cicer species do not naturally cross with the cultivated species and therefore are grouped into the tertiary gene pool. The genus Cicer has not been extensively investigated for crossability, taxonomy, cytology, genetics, breeding, and molecular biology. Although techniques are available to cross incompatible annual species from the tertiary gene pool with the cultivated species, hybrids are not available for the improvement of chickpea. Lack of crossability information on perennial species, which have several important genes, indicates that the enormous genetic potential of these species remains unexplored. Experimental evidence indicates that the barriers to hybridization between the primary gene pool and perennial Cicer species are post-zygotic and due to embryo abortion. Application of growth regulators delays embryo abortion up to 15–17 days but not to the stage of mature seeds. Considering the enormous potential of wild species in chickpea crop improvement, emphasis should be given to overcome barriers to hybridization with the cultivated species. Research on the presence of flavonoids in wild Cicer species conferring disease and pest resistance should be strengthened. Emphasis should also be given to the development of a robust molecular marker system for diversity analysis and eventual widespread use in marker-assisted introgression of genes from the wild Cicer species to cultivated forms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbo S, Berger J, Turner NC (2003) Evolution of cultivated chickpea: four bottlenecks limit diversity and constraint adaptation. Funct Plant Biol 30:1081–1087

    Google Scholar 

  • Abbo S, Molina C, Jungmann R, Grusak A, Berkovitch Z, Reifen R, Kahl G, Winter P (2005) Quantitative trait loci governing carotenoid concentration and weight in seeds of chickpea (Cicer arietinum L.). Theor Appl Genet 111:185–195

    PubMed  CAS  Google Scholar 

  • Ahmad F, Slinkard AE, Scoles GJ (1988) Investigations into the barrier(s) to interspecific hybridization between Cicer arietinum L. and eight other annual Cicer species. Plant Breed 100:193–198

    Google Scholar 

  • Badami PS, Mallikarjuna N, Moss JP (1997) Interspecific hybridization between Cicer arietinum and C. pinnatifidum. Plant Breed 116:393–395

    Google Scholar 

  • Berger JD, Abbo S, Turner NC (2003) Ecogeography of annual wild Cicer species: the poor state of the world collection. Crop Sci 43:1076–1090

    Google Scholar 

  • Bhattarai T, Fettig S (2005) Isolation and characterization of a dehydrin gene from Cicer pinnatifidum, a drought-resistant wild relative of chickpea. Physiol Plant 123:452–458

    CAS  Google Scholar 

  • Buhariwalla HK, Jayashree B, Eshwar K (2005) ESTs from chickpea roots with putative roles for drought tolerance. BMC Plant Biol 5:16

    PubMed  Google Scholar 

  • Canci H, Toker C (2009) Evaluation of yield criteria for drought and heat resistance in chickpea (Cicer arietinum L.). J Agron Crop Sci 195(1):47

    Google Scholar 

  • Chandel KPS (1984) A note on the occurrence of wild Cicer microphyllum Benth and its nutrient status. Int Chickpea Newsl 10:4–5

    Google Scholar 

  • Cho S, Kumar J, Shultz JL, Anupama K, Tefera F, Muehlbauer FJ (2002) Mapping genes for double podding and other morphological traits in chickpea. Euphytica 128:285–292

    CAS  Google Scholar 

  • Cho S, Chen W, Muehlbauer FL (2004) Pathotype-specific factors in chickpea (Cicer arietinum L.) for quantitative resistance to ascochyta blight. Theor Appl Genet 109:733–739

    PubMed  Google Scholar 

  • Choudhary S, Sethy NK, Shokeen B, Bhatia S (2009) Development of chickpea EST-SSR markers and analysis of allelic variation across related species. Theor Appl Genet 118:591–608

    PubMed  CAS  Google Scholar 

  • Choumane W, Winter P, Weigand F, Kahl G (2000) Conservation and variability of sequence tagged microsatellite sites from chickpea (Cicer arietinum L.) with in the Genus Cicer. Theor Appl Genet 101:269–278

    CAS  Google Scholar 

  • Collard BCY, Ades PK, Pang ECK, Brouwer JB, Taylor PWJ (2001) Prospecting for sources of resistance to ascochyta blight in wild Cicer species. Aust Plant Pathol 30:271–276

    Google Scholar 

  • Collard BCY, Pang ECK, Ades PK, Taylor PWJ (2003) Preliminary investigation of QTLs associated with seedling resistance to ascochyta blight from Cicer echinopsermum, a wild relative of chickpea. Theor Appl Genet 107:719–729

    PubMed  CAS  Google Scholar 

  • Cox TS, House LR, Frey KJ (1984) Potential of wild germplasm for increasing yield of grain sorghum. Euphytica 33:673–684

    Google Scholar 

  • Di Vito M, Greco N, Singh KB, Saxena MC (1988) Response of chickpea germplasm lines to Heterodera ciceri attack. Nematol Mediterr 16:17–18

    Google Scholar 

  • Duke JA (1981) Handbook of legumes of world economic importance. Plenum, New York, USA, pp 52–57

    Google Scholar 

  • Flandez-Galvez H, Ford R, Pang ECK, Taylor PWJ (2003) An intraspecific linkage map of the chickpea (Cicer arietinum L.) genome based on sequence tagged microsatellite site and resistant gene analog markers. Theor Appl Genet 106:1447–1456

    PubMed  CAS  Google Scholar 

  • Gowda CLL (2005) Helicoverpa – the global problem. In: Sharma HC (ed) Heliothis/Helicoverpa management: emerging trends and strategies for future research. Oxford and IBH, New Delhi, India, pp 1–6

    Google Scholar 

  • Gowda CLL, Gaur PM (2004) Global scenario of chickpea research – present status and future thrusts. In: Ali M, Singh BB, Shivkumar S, Dhar V (eds) Pulses in new perspective. Indian Society of Pulses Research and Development, Indian Institute of Pulses Research, Kanpur, UP, India, pp 1–22

    Google Scholar 

  • Greco N, Di Vito M, Saxena MC, Reddy MV (1988) Effect of Heterodera ciceri on yield of chickpea and lentil and development of this nematode on chickpea in Syria. Nematologica 4:98–114

    Google Scholar 

  • Grewal RK, Lulsdorf M, Croser J, Ochatt S, Vandenberg V, Warkentin T (2009) Doubled-haploid production in chickpea (Cicer arietinum L.): 3. Role of stress treatments. Plant Cell Rep 28(8):1289–99

    PubMed  CAS  Google Scholar 

  • Harlan J, de Wet J (1971) Towards a rational classification of cultivated plants. Taxon 20:509–517

    Google Scholar 

  • Haware MP, Nene YL (1982) Races of Fusarium oxysporum f. sp. ciceri. Plant Dis 66:809–810

    Google Scholar 

  • Haware MP, Nene YL, Pundir RPS, Narayana Rao J (1992) Screening of world chickpea germplasm for resistance to fusarium wilt. Field Crops Res 30:147–154

    Google Scholar 

  • Haware MP, Nene YL, Natarajan M (1996) Survival of Fusarium oxysporum f. sp. ciceri in soil in the absence of chickpea. Phytopathol Mediterr 35:9–12

    Google Scholar 

  • Helbaek H (1970) The plant husbandry at Hacillar. In: Mellaart J (ed) Excavation at Hacillar. Edinburg University Press, Gerald Duckworth, London, UK, pp 189–244

    Google Scholar 

  • Huttel B, Winter P, Weising K, Choumane W, Weigand F, Kahl G (1999) Sequence-tagged microsatellite markers for chickpea (Cicer arietinum L.). Genome 42:210–217

    PubMed  CAS  Google Scholar 

  • Irula M, Rubio J, Cubero JI, Gil J, Millan T (2002) Phylogenetic analysis in the genus Cicer and cultivated chickpea using RAPD and ISSR markers. Theor Appl Genet 104:643–651

    Google Scholar 

  • Irula M, Rubio J, Barro F, Cubero JI, Millan T, Gil J (2006) Detection of two quantitative trait loci for resistance to ascochyta blight in an intra-specific cross of chickpea (Cicer arietinum L.): development of SCAR markers associated with resistance. Theor Appl Genet 112:278–287

    Google Scholar 

  • Jamil FF, Sarwar N, Sarwar M, Khan JA, Geistlinger J, Kahl G (2000) Genetic and pathogenic diversity within Ascochyta rabiei (Pass.) Lab. populations in Pakistan causing blight of chickpea (Cicer arietinum L.). Physiol Mol Plant Pathol 57:243–254

    CAS  Google Scholar 

  • Jansen RK, Wojciechowski MF, Sanniyasi E, Lee SB, Daniell H (2008) Complete plastid genome sequence of the chickpea (Cicer arietinum) and the phylogenetic distribution of rps 12 and clp intron losses among legumes (Leguminoase). Mol Phylogenet Evol 48(3):1204–1217

    PubMed  CAS  Google Scholar 

  • Jayashree B, Buhariwalla HK, Shinde S, Crouch JH (2005) A legume genomic resource: the chickpea expressed sequence tag database. J Biotechnol 8:3

    Google Scholar 

  • Jimenez-Diaz RM, Alcala-Jimenez AR, Hervas A, Trapero-Casas JL (1993) Pathogenic variability and hosts resistance in the Fusarium oxysporum f.sp. ciceris/Cicer arietinum pathosystem. In: Proceedings of the European Seminar on fusarium mycotoxins, taxonomy, pathogenicity and host resistance. 3rd Hodowsla Roslin Aklimatyazacja i Nasiennictwo. Plant Breeding and Acclimatization Institute, Radzikov, Poland, pp 87–94

    Google Scholar 

  • Jimenez-Diaz RM, Trapero-Casas A, Cabrera de la Colina J (1989) Races of Fusarium oxysporum f. sp. Ciceris infecting chickpea in southern Spain. In: Tjamos EC, Beckman CH (eds) Vascular wilt disease of plants, vol H28, NATO ASI Sr. Berlin, Springer, pp 515–520

    Google Scholar 

  • Kaiser WJ, Alcala-Ji nenez AR, Hervas-Jargas A, Trapero-cacas JL, Jinenez-diaz RM (1994) Screening of wild Cicer species for resistance to race 0 and 5 of Fusarium oxysporum f. sp. ciceris. Plant Dis 78(10):962–967

    Google Scholar 

  • Kelly A, Alcala-Jimnez AR, Bainbridge BW, Heale JB, Perez-Artes E, Jimnez-Diaz RM (1994) Use of genetic fingerprinting and random amplified polymorphic DNA to characterize pathotypes of Fusarium oxysporum f. sp. ciceri infecting chickpea. Phytopathology 84:1293–1298

    CAS  Google Scholar 

  • Khanna-Chopra R, Sinha SK (1987) Chickpea: physiological aspects on growth and yield. In: Saxena MC, Singh KB (eds) The chickpea. CABI Publishing, Wallingford, UK, pp 163–189

    Google Scholar 

  • Krishnamurthy L, Kashiwagi J, Upadhyaya HD, Seeraj R (2003) Genetic diversity of drought-avoidance root traits in the mini-core germplasm collection of chickpea. Int Chickpea Pigeonpea Newsl 20:21–24

    Google Scholar 

  • Ladizinsky G, Adler A (1976) The origin of chickpea (Cicer arietinum L.). Euphytica 25:211–217

    Google Scholar 

  • Lenne JM, Wood D (1991) Plant disease and the use of wild germplasm. Annu Rev Phytopathol 29:35–63

    Google Scholar 

  • Lev-Yadun S, Gopher A, Abbo S (2000) The cradle of agriculture. Science 288:1602–1603

    PubMed  CAS  Google Scholar 

  • Li D, Pfeiffer TW, Cornelius PL (2008) Soybean QTL for yield and yield components associated with Glycine soja alleles. Crop Sci 48:571–581

    Google Scholar 

  • Lichtenzveig J, Scheuring C, Dodge J, Abbo S, Zhang HB (2005) Construction of BAC and BIBAC libraries and their application for generation of SSR markers for genome analysis of chickpea (Cicer arietinum L.). Theor Appl Genet 110:492–510

    PubMed  CAS  Google Scholar 

  • Madrid E, Rubiales D, Moral A, Moreno MT, Millan T, Gil J, Rubio J (2008) Mechanism and molecular markers associated with rust resistance in a chickpea interspecific cross (Cicer arietinum × Cicer reticulatum). Eur J Plant Pathol 121(1):43–53

    CAS  Google Scholar 

  • Malhotra RS, Singh KB, Saxena MC (1997) Effect of irrigation on winter-sown chickpea in a Mediterranean environment. J Agron Crop Sci 178:237–243

    Google Scholar 

  • Malhotra RS, Singh KB, Di Vito M, Greco N, Saxena MC (2002) Registration of ILC 10765 and ILC 10766 chickpea germplasm lines resistant to cyst nematode. Crop Sci 42:1756

    Google Scholar 

  • Malhotra RS, Baum M, Udupa SM, Bayaa B, Kababbeh S, Khalaf G (2003) Ascochyta blight research in chickpea – present status and future prospects. In: Sharma RN, Srivastava GK, Rahore AL, Sharma ML, Khan MA (eds) Proceedings of the international chickpea conference chickpea research for the millennium, 20–22 Jan 2003, Raipur, Chhattisgarh, India, pp 108–117

    Google Scholar 

  • Mallikarjuna N (1999) Ovule and embryo culture to obtain hybrids from interspecific incompatible pollinations in chickpea. Euphytica 110:1–6

    Google Scholar 

  • Mallikarjuna N (2003) Progeny sans papa! SATrends, ICRISAT, Patancheru, AP, India

    Google Scholar 

  • Mallikarjuna N, Jadhav DR (2008) Techniques to produce hybrid between Cicer arietinum L. × C. pinnatifidum Jaub. Indian. J Genet 68(4):1–8

    Google Scholar 

  • Mallikarjuna N, Sastri DC (1985) In vitro culture of ovules and embryos from some interspecific in the genus Arachis. In: Moss JP (ed) Proceedings of the international workshop on the cytogenetics of Arachis, 31 Oct–2 Nov 2003. ICRISAT, Patancheru, AP, India, pp 153–158

    Google Scholar 

  • Mallikarjuna N, Kranthi KR, Jadhav DJ, Kranthi S, Chandra S (2004) Influence of foliar chemical compounds on the development of Spodoptera litura (Fab.) on interspecific derivatives of groundnut. J Appl Entomol 128(5):321–328

    CAS  Google Scholar 

  • Mallikarjuna N, Jadhav DJ, Clarke H, Coyne C, Muehlbauer FJ (2005) Induction of androgenesis as a consequence of wide crossing in chickpea. Int Chickpea Pigeonpea Newsl 12:12–15

    Google Scholar 

  • Mallikarjuna N, Sharma HC, Upadhyaya HD (2007a) Exploitation of wild relatives of pigeonpea and chickpea for resistance to Helicoverpa armigera. eJ SAT Agric Res Crop Improv 3(1):4–7

    Google Scholar 

  • Mallikarjuna N, Mcgrew S, Reinerson S, Rajesh PN, Coyne C, Muehlbauer FJ (2007b) Pollen as a means of international transfer of germplasm. SAT eJ 2(1): ejournal.icrisat.org

    Google Scholar 

  • Mallikarjuna N, Jadhav D, Vakiti N, Amudhavalli C, Chandra S, Hoisington D (2007c) Progress in the interspecific hybridization between Cicer arietinum and the wild species C. bijugum. SAT eJ 5(1): ejournal.icrisat.org

    Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol 123:439–442

    PubMed  CAS  Google Scholar 

  • McCouch SR, Sweeney M, Li J, Jiang H, Thomson M, Septinginsih E, Edwards J, Moncada P, Xiao J, Garris A, Tai T, Martinez C, Tohme J, Sugiono M, McClung A, Yuan LP, Ahn SN (2007) Through the genetic bottleneck: O. rufipogon as a source of trait-enhancing alleles for O. sativa. Euphytica 154:317–339

    CAS  Google Scholar 

  • Millan T, Clarke HJ, Siddique KHM, Buhariwalla HK, Gaur PM, Kumar J, Gill J, Kahl G, Winter P (2006) Chickpea molecular breeding: new tools and concepts. Euphytica 147:81–103

    Google Scholar 

  • Muehlbauer FJ, Rajesh PN (2008) Genomics of chickpea, a major source of protein in the tropics. In: Paul HM, Ming R (eds) Genomics of tropical crop plants. Springer, New York, USA, pp 171–186

    Google Scholar 

  • Muehlbauer FJ, Kaiser WJ, Simon CS (1994) Potential for wild species in cool season food legume breeding. Euphytica 73:109–114

    Google Scholar 

  • Nene YL (1982) A review of ascochyta blight of chickpea. Trop Pest Manag 28:61–70

    Google Scholar 

  • Nene YL, Reddy MV (1987) Chickpea diseases and their control. In: Saxena MC, Singh KB (eds) The chickpea. CABI Publishing, Wallingford, UK

    Google Scholar 

  • Ocampo B, Robertson LD, Singh KB (1998) Variation in seed protein content in the annual wild Cicer species. J Sci Food Agric 78:220–224

    CAS  Google Scholar 

  • Palomino C, Fernandez-Romero MD, Rubio J, Torres A, Moreno MT, Millan T (2009) Integration of new CAPS and dCAPS-RGA markers into a composite chickpea genetic map and their association with disease resistance. Theor Appl Genet 118(4):671–682

    PubMed  CAS  Google Scholar 

  • Pande S, Ramgopal D, Kishore GK, Mallikarjuna N, Sharma M, Pathak M, Narayana Rao J (2006) Evaluation of wild Cicer species for resistance to Ascochyta blight and Botrytis gray mold in controlled environment at ICRISAT, Patancheru, India. Int Chickpea Pigeonpea Newsl 13:25–26

    Google Scholar 

  • Pundir RPS, Mengesha MH (1995) Cross compatibility between chickpea and its wild relative cicer echinespermum davis. Euplytice 83:241–245

    Google Scholar 

  • Rajesh PN, Muehlbauer FJ (2008) Discovery and detection of single nucleotide polymorphism (SNP) in coding and genomic sequences in chickpea (Cicer arietinum L.). Euphytica 162:291–300

    CAS  Google Scholar 

  • Rajesh PN, Sant VJ, Gupta VS, Muehlbauer FJ, Ranjekar PK (2002) Genetic relationships among annual and perennial wild species of Cicer using inter simple sequence repeat (ISSR) polymorphism. Euphytica 129(1):15–23

    Google Scholar 

  • Rajesh PN, Gupta VS, Ranjekar PK, Muehlbauer FJ (2003) Functional genome analysis using DDRT with respect to ascochyta blight disease in chickpea. Int Chickpea Pigeonpea Newsl 10:35–37

    Google Scholar 

  • Rakshit S, Winter P, Tekeoglu M, Juarez M, Pfaff J, Benko-Iseppon AM, Muehlbauer FJ, Kahl G (2003) DAF marker tightly linked to a major locus for ascochyta blight resistance in chickpea (Cicer arietinum L.). Euphytica 132:23–30

    CAS  Google Scholar 

  • Reddy MV, Kabbabeh S (1985) Pathogenic variability in Ascochyta rabiei (Pass.) Lab. in Syria and Lebanon. Phytopathol Mediterr 24:265–266

    Google Scholar 

  • Reed W, Cardona C, Sithanantham S, Lateef SS (1987) Chickpea insect pests and their control. In: Saxena MC, Singh KB (eds) The chickpea. CABI, Wallingford, UK, pp 283–318

    Google Scholar 

  • Sant VJ, Patankar AG, Sarode NG, Mhase LB, Sainani MN, Deshmukh RB, Ranjekar PK, Gupta VS (1999) Potential of DNA markers in detecting divergence and in analyzing heterosis in Indian elite chickpea cultivars. Theor Appl Genet 102:676–682

    Google Scholar 

  • Santra DK, Tekeoglu M, Ratnaparkhe M, Kaiser WJ, Muehlbauer FJ (2000) Identification and mapping of QTLs conferring resistance to Ascochyta blight in chickpea. Crop Sci 40:1606–1612

    CAS  Google Scholar 

  • Saraf CS, Rupela OP, Hegde DM, Yadav RL, Shivkumar BG, Bhattarai S, Razzaque MA, Sattar MA (1998) Biological nitrogen fixation and residual effects of winter grain legumes in rice and wheat cropping systems of the Indo-Gangetic plain. In: Kumar JVDK, Johansen C, Rego TJ (eds) Residual effects of legumes in rice and wheat cropping systems of the Indo-Gangetic plain. Oxford and IBH Publishing, New Delhi, India, pp 14–30

    Google Scholar 

  • Serret MD, Udupa SM, Weigand F (1997a) Assessment of genetic diversity of cultivated chickpea using microsatellite-derived RFLP markers: implications for origin. Plant Breed 116:575–578

    Google Scholar 

  • Serret MD, Udupa SM, Weigand F (1997b) Assessment of genetic diversity of cultivated chickpea using microsatellite-derived RFLP markers: implications for origin. Plant Breed 116:573–578

    CAS  Google Scholar 

  • Sethy NK, Shokeen B, Edwar KJ, Bhatia S (2006) Development of microsatellite markers and analysis of intraspecific genetic variability in chickpea (Cicer arietinum L.). Theor Appl Genet 112:1416–1428

    PubMed  CAS  Google Scholar 

  • Sharma PC, Huttel B, Winter P, Kahl G, Gardner RC, Weising K (1995) The potential of microsatellites for hybridization and polymerase chain reaction-based DNA fingerprinting of chickpea (Cicer arietinum L.) and related species. Electrophoresis 16:1755–1761

    PubMed  CAS  Google Scholar 

  • Sharma KD, Chen W, Muehlbauer FL (2005) Genetics of chickpea resistance to five races of fusarium wilt and a concise set of race differentials for Fusarium oxysporum f. sp. ciceris. Plant Dis 89:385–390

    Google Scholar 

  • Sharma HC, Pampapathy G, Lanka SK, Ridsdill-Smith TJ (2005a) Antibiosis mechanism of resistance to pod borer, Helicoverpa armigera in wild relatives of chickpea. Euphytica 142:107–117

    Google Scholar 

  • Sharma HC, Bhagwat MP, Pampapathy G, Sharma JP, Ridsdill-Smith TJ (2006) Perennial wild Cicer relatives of chickpea as potential sources of resistance to Helicoverpa armigera. Genet Resour Crop Evol 53:131–138

    Google Scholar 

  • Sharma M, Varshney RK, Rao JN, Kannan S, Hoisington D, Pande S (2009) Genetic diversity in Indian isolates of Fusarium oxysporum f. sp. cieris, chickpea wilt pathogen. Afr J Biotechnol 8(6):1016–1023

    CAS  Google Scholar 

  • Shivkumar S, Gupta S, Chandra S, Singh BB (2004) How wide is the genetic base of pulse crops. In: Ali M, Singh BB, Shivkumar S, Dhar V (eds) Pulses in new perspective. Proceedings of national symposium on crop diversification and natural resource management. Indian Institute of Pulses Reasearch, Kanpur, UP, India, pp 211–221

    Google Scholar 

  • Simmonds SJ, Stevenson PC (2001) Effects of isoflavonoids from Cicer on larvae of Helicoverpa armigera. J Chem Ecol 27(5):965–977

    PubMed  CAS  Google Scholar 

  • Singh KB, Hawtin GC (1979) Winter planting of chickpea. Int Chickpea Newsl 1:4

    Google Scholar 

  • Singh KB, Ocampo B (1997) Exploitation of wild Cicer species for yield improvement in chickpea. Theor Appl Genet 95:418–423

    Google Scholar 

  • Singh U, Pundir RPS (1991) Amino acid composition and protein content of chickpea and its wild relatives. Int Chickpea Newsl 25:19–20

    Google Scholar 

  • Singh KB, Reddy MV (1991) Advances in disease resistance breeding in chickpea. Adv Agron 45:191–22

    Google Scholar 

  • Singh KB, Malhotra RS, Halila MH, Knights EJ, Verma MM (1990) Current status and future strategy in breeding chickpea for resistance to biotic and abiotic stresses. In: Muehlbauer FJ, Kaiser WJ (eds) Expanding the production and use of cool season food legumes. Kluwer, Dordrecht, Netherlands, pp 572–591

    Google Scholar 

  • Singh KB, Malhotra RS, Halila H, Knights EJ, Verma MM (1994) Current status and future strategy in breeding chickpea for resistance to biotic and abiotic stresses. Euphytica 73:137–149

    Google Scholar 

  • Singh KB, Ocampo B, Robertson LD (1998) Diversity for abiotic and biotic stress resistance in the wild annual Cicer species. Genet Resour Crop Evol 45:191–222

    Google Scholar 

  • Southgate BJ (1978) The importance of bruchids as pests of grain legumes, their distribution and control. In: Singh SR, Van Emden HF, Taylor TA (eds) Pests of grain legumes: ecology and control. Academic, London, UK, pp 219–229

    Google Scholar 

  • Staginnus C, Winter P, Desel C, Schmidt T, Kahl G (1999) Molecular structure and chromosomal localization of major repetitive DNA families. The chickpea (Cicer arietinum L.) genome. Plant Mol Biol 39:1037–1050

    PubMed  CAS  Google Scholar 

  • Stamigna C, Crino P, Saccardo F (2000) Wild relatives of chickpea: multiple disease resistance and problems to introgression in the cultigen. J Genet Breed 54:213–219

    Google Scholar 

  • Stevenson PC, Veitch NC (1996) Isoflavones from the roots of Cicer judaicum. Phytochemistry 43:695–700

    Google Scholar 

  • Stevenson PC, Veitch NC (1998) A 2-arylbenzofuran from roots of Cicer bijugum associated with Fusarium wilt resistance. Phytochemistry

    Google Scholar 

  • Stevenson PC, Haware MP (1999) Maackiain in Cicer bijugum Rech. F. associated with resistance to Botrytis grey mould. Biochem Syst Ecol 27:761–767

    CAS  Google Scholar 

  • Stevenson PC, Anderson JC, Blaney WM, Simmonds MSJ (1993) Developmental inhibition of Spodoptera litura (Fab.) larvae by a novel caffeoylquine acid from the wild groundnut Arachis paraguariensis (Chod et Hassl.). J Chem Ecol 19:2917–2933

    CAS  Google Scholar 

  • Taran B, Warkentin TD, Tullu A, Vandenberg A (2007) Genetic mapping of ascochyta blight resistance in chickpea (Cicer arietinum L.) using a simple sequence repeat linkage map. Genome 50:26–34

    Google Scholar 

  • Tekeoglu M, Santra DK, Kaiser WJ, Muehlbauer FJ (2000) Ascochyta blight resistance inheritance in three chickpea recombinant inbred line populations. Crop Sci 40:1251–1256

    Google Scholar 

  • Tekeoglu M, Rajesh PN, Muehlbauer FJ (2002) Integration of sequence tagged microsatellite sites to the chickpea genetic map. Theor Appl Genet 105:847–854

    PubMed  CAS  Google Scholar 

  • Tekeoglu M, Isuk M, Muehlbauer FJ (2004) QTL analysis of ascochyta blight resistance in chickpea. Turk J Agric Forecast 28:183–187

    CAS  Google Scholar 

  • Toker C, Canci H, Yildirim T (2007) Evaluation of perennial wild Cicer species for drought resistance. Genet Resour Crop Evol 54:1781–1786

    Google Scholar 

  • Udupa SM, Baum M (2003) Genetic dissection of pathotype-specific resistance to ascochyta blight disease in chickpea (Cicer arietinum L.) using microsatellite markers. Theor Appl Genet 106:1196–1202

    PubMed  CAS  Google Scholar 

  • Udupa SM, Sharma A, Sharma RP, Pai RA (1993) Narrow genetic variability in Cicer arietinum L. as revealed by RFLP analysis. J Plant Biochem Biotechnol 2:83–86

    CAS  Google Scholar 

  • Upadhyaya HD, Dwivedi SL, Baum M, Varshney RK, Udupa SM, Gowda CLL, Hoisington D, Singh D (2008) Genetic structure, diversity, and allelic richness in composite collection and reference set in chickpea (Cicer arietinum L.). BMC Plant Biol 8:106

    PubMed  Google Scholar 

  • van der Maesen LJG (1987) Origin, history and taxonomy of chickpea. In: Saxena MC, Singh RB (eds) The chickpea. CABI, Wallingford, UK, pp 139–156

    Google Scholar 

  • van der Maesen LJG, Pundir RPS (1984) Availability and use of wild Cicer germplasm. FAO/IBPGR Plant Genet Resour Newsl 57:19–24

    Google Scholar 

  • van der Maesen LJG, Maxted N, Javadi F, Coles S, Davies AMR (2007) Taxonomy of the genus Cicer revisited. In: Yadav SS, Redden RJ, Chen W, Sharma B (eds) Chickpea breeding and management. CABI, Wallingford, UK, pp 14–47

    Google Scholar 

  • van Rheenen HA (1991) Chickpea breeding. Plant Breed Abstr 61:997–1009

    Google Scholar 

  • van Rheenen HA (1992) Biotechnology and chickpea breeding. Int Chickpea Newsl 26:14–17

    Google Scholar 

  • Williams PC, Singh U (1987) The chickpea – nutritional quality and the evaluation of quality in breeding programs. In: Saxena MC, Singh KB (eds) The chickpea. CABI Publishing, Wallingford, UK, pp 329–356

    Google Scholar 

  • Winter P, Pfaff T, Udupa SM, Huttel B, Sharma PC, Sahi S, Arreguin-Espinoza R, Wigand F, Muehlbauer FJ, Kahl G (1999) Characterization and mapping of sequence tagged microsatellite sites in the chickpea genome. Mol Gen Genet 262:90–91

    PubMed  CAS  Google Scholar 

  • Winter P, Benko-Iseppon AM, Huttel B, Ratnaparkhe M, Tullu A, Sonnante G, Pfaff T, Tekeoglu M, Santra D, Sant VJ, Rajesh PN, Kahl G, Muehlbauer FJ (2000) A linkage map of the chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C. arietinum × C. reticulatum cross; localization of resistance genes for fusarium wilt races 4 and 5. Theor Appl Genet 101:1155–1163

    CAS  Google Scholar 

  • Zohary D (1999) Monophyletic vs. polyphyletic origin of the crops on which agriculture was founded in the Near East. Genet Resour Crop Evol 46:133–142

    Google Scholar 

  • Zohary D, Hopf M (1988) Domestication of plants in the old world: the origin and spread of cultivated plants in West Asia, Europe, and the Nile Valley. Oxford University Press, New York, UK

    Google Scholar 

  • Zohary D, Hopf M (2000) Domestication of plants in the old world, 3rd edn. Oxford University Press, New York, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nalini Mallikarjuna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mallikarjuna, N. et al. (2011). Cicer. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14387-8_4

Download citation

Publish with us

Policies and ethics