Skip to main content

Abstract

Pisum is a highly diverse genus that can be considered monospecific or a species complex with graded patterns of relationships. The subset of Pisum that is typically considered P. elatius encompasses most of the genetic diversity of the genus. The one major taxon with a degree of distinctness and homogeneity is P. fulvum, although genetic distances within P. elatius can be greater than distances between a P. elatius and a P. fulvum accession. The two cultivated types are P. sativum and P. abyssinicum, which appear to have been domesticated independently from distinct gene pools. P. sativum shows evidence of diverse connections with its wild ancestors, whereas the diversity of P. abyssinicum is narrow. There is a great abundance of diversity available in P. sativum alone, but this is markedly enhanced if P. abyssinicum or the wild taxa are included. The abundance of allelic and phenotypic diversity in Pisum suggests that there are great opportunities for discovering and incorporating useful genetic variation in cultivated pea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baranger A, Aubert G, Arnau G, Lainé AL, Deniot G, Deniot J, Potier C, Weinachter I, Lejeune-Hénaut J, Lallemand J, Burstin J (2004) Genetic diversity within Pisum sativum using protein- and PCR-based markers. Theor Appl Genet 108:1309–1321

    Article  PubMed  CAS  Google Scholar 

  • Bean SJ, Gooding PS, Mullineaux PM, Davies DR (1997) A simple system for pea transformation. Plant Cell Rep 16:513–519

    Google Scholar 

  • Bhattacharyya MK, Smith AM, Ellis THN, Hedley C, Martin C (1990) The wrinkled seed character of pea described by Mendel is caused by a transposon like insertion in a gene encoding starch branching enzyme. Cell 60:115–122

    Article  PubMed  CAS  Google Scholar 

  • Blixt S (1972) Mutation genetics in Pisum. Agric Hort Genet 30:1–293

    Google Scholar 

  • Brinkmann B, Klintschar M, Neuhuber F, Hühne J, Rolf B (1998) Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. Am J Hum Genet 62:1408–1415

    Article  PubMed  CAS  Google Scholar 

  • Byrne O, Hardie D, Smith P (2000) Development of a molecular marker for pea weevil resistance in field pea. In: ReganK WP, Siddique K (eds) Crop updates: pulse research and industry development in Western Australia 2000. Bull 4405. Agriculture Western Australia, South Perth, Australia, p 102

    Google Scholar 

  • Byrne OM, Hardie DC, Khan T, Yan G (2008) Genetic analysis of pod and seed resistance to pea weevil in a Pisum sativum × P. fulvum interspecific cross. Aust J Agric Res 59:854–862

    Article  CAS  Google Scholar 

  • Clement SL, Hardie DC, Elberson LR (2002) Variation among accessions of Pisum fulvum for resistance to pea weevil. Crop Sci 42:2167–2173

    Article  Google Scholar 

  • Clement SL, McPhee KE, Elberson LR, Evans MA (2009) Pea weevil, Bruchus pisorum L. (Coleoptera: Bruchidae), resistance in Pisum sativum × Pisum fulvum interspecific crosses. Plant Breed 128:478–485

    Article  Google Scholar 

  • Constantin GD, Krath BN, MacFarlane SA, Nicolaisen M, Johansen IE, Lund OS (2004) Virus-induced gene silencing as a tool for functional genomics in a legume species. Plant J 40:622–631

    Article  PubMed  CAS  Google Scholar 

  • Coyne CJ, McClendon MT, Walling JG, Timmerman-Vaughan GM, Murray S, Meksem K, Lightfoot DA, Shultz JL, Keller KE, Martin RR, Inglis DA, Rajesh PN, McPhee KE, Weeden NF, Grusak MA, Li C-M, Storlieaj EW (2007) Construction and characterization of two bacterial artificial chromosome libraries of pea (Pisum sativum L.) for the isolation of economically important genes. Genome 50:871–875

    Article  PubMed  CAS  Google Scholar 

  • Dalmais M, Schmidt J, Le Signor C, Moussy F, Burstin J, Savois V, Aubert G, Brunaud V, de Oliveira Y, Guichard C, Thompson R, Bendahmane A (2008) UTILLdb, a Pisum sativum in silico forward and reverse genetics tool. Genome Biol 9:R43

    Article  PubMed  Google Scholar 

  • Doss RP, Oliver JE, Proebsting WM, Potter SW, Kuy S, Clement SL, Williamson RT, Carney JR, DeVilbiss ED (2000) Bruchins: insect-derived plant regulators that stimulate neoplasm formation. Proc Natl Acad Sci USA 97:6218–6223

    Article  PubMed  CAS  Google Scholar 

  • Ellis THN, Poyser SJ, Knox MR, Vershinin AV, Ambrose MJ (1998) Ty1-copia class retrotransposon insertion site polymorphism for linkage and diversity analysis in pea. Mol Gen Genet 260:9–19

    PubMed  CAS  Google Scholar 

  • Ellis THN, Vershinin AV, Knox MR, Turner L, Ambrose MJ (2005) Evolutionary change in Pisum genome organisation. In: Tuberosa R, Phillips RL, Gale M (eds) In the wake of the double helix: from the green revolution to the gene revolution. Avenue Media, Bologna, Italy, pp 91–102

    Google Scholar 

  • Elvira-Recuenco M (2000) Sustainable control of pea bacterial blight. PhD Thesis, Wageningen University, Netherlands [ISBN 90-5808-291-1]

    Google Scholar 

  • Elvira-Recuenco M, Taylor JD (2001) Resistance to bacterial blight (Pseudomonas syringae pv. pisi) in Spanish pea (Pisum sativum) landraces. Euphytica 118:305–311

    Article  Google Scholar 

  • Fondevilla S, Ávila CM, Cubero JI, Rubiales D (2005) Response to Mycosphaerella pinodes in a germplasm collection of Pisum spp. Plant Breed 124:313–314

    Article  Google Scholar 

  • Fondevilla S, Carver TLW, Moreno MT, Rubiales D (2006) Macroscopic and histological characterisation of genes er1 and er2 for powdery mildew resistance in pea. Eur J Plant Pathol 115:309–321

    Article  Google Scholar 

  • Fondevilla S, Torres AM, Moreno MT, Rubiales D (2007) Identification of a new gene for resistance to powdery mildew in Pisum fulvum, a wild relative of pea. Breed Sci 57:181–184

    Article  Google Scholar 

  • Ford R, Le Roux K, Itman C, Brouwer JB, Taylor PWJ (2002) Diversity analysis and genotyping in Pisum with sequence tagged microsatellite site (STMS) primers. Euphytica 124:397–405

    Article  CAS  Google Scholar 

  • Gao Z, Eyers S, Thomas C, Ellis N, Maule A (2004a) Identification of markers very tightly linked to recessive sbm resistance to Pea seed-borne mosaic virus. Theor Appl Genet 109:488–494

    PubMed  CAS  Google Scholar 

  • Gao Z, Johansen E, Eyers S, Thomas CL, Ellis THN, Maule AJ (2004b) The potyvirus recessive resistance gene, sbm1, identifies a novel role for ranslation initiation factor eIF4E in cell-to-cell trafficking. Plant J 40:376–385

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot J-P, Letisse F, Matusova R, Danoun S, Portais J-C, Bouwmeester H, Bécard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194

    Article  PubMed  CAS  Google Scholar 

  • Hofer J, Turner L, Moreau C, Ambrose M, Isaac P, Butcher S, Weller J, Dupin A, Dalmais M, Le Signor C, Bendahmane A, Ellis N (2009) Tendril-less regulates tendril formation in pea leaves. Plant Cell 21:420–428

    Article  PubMed  CAS  Google Scholar 

  • Hunter PJ, Ellis N, Taylor JD (2001) Association of dominant loci for resistance to Pseudomonas syringae pv. pisi with linkage groups II, VI and VII of Pisum sativum. Theor Appl Genet 103:129–135

    Article  CAS  Google Scholar 

  • Jing R, Knox MR, Lee JM, Vershinin AV, Ambrose M, Ellis THN, Flavell AJ (2005) Insertional polymorphism and antiquity of PDR1 retrotransposon insertions in Pisum species. Genetics 171:741–752

    Article  PubMed  CAS  Google Scholar 

  • Jing R, Johnson R, Seres A, Kiss G, Ambrose MJ, Knox MR, Ellis THN, Flavell AJ (2007) Gene-based sequence diversity analysis of field pea (Pisum). Genetics 177:1–13

    Article  Google Scholar 

  • Jing R, Vershinin A, Grzebyta J, Shaw P, Smykal P, Marshall D, Ambrose MJ, Ellis THN, Flavell AJ (2010) The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon based insertion polymorphism (RBIP) marker analysis. BMC Evol Biol 10:44

    Article  PubMed  Google Scholar 

  • Kenicer GJ (2006) Systematics and biogeography of Lathyrus L. (Leguminosae, Papilionoideae). PhD Thesis, University of Edinburgh, Edinburgh, Scotland, UK

    Google Scholar 

  • Kenicer GJ, Kajita T, Pennington RT, Murata J (2005) Systematics and biogeography of leguminosae based on internal transcribed spacer and cpDNA sequence data. Am J Bot 92:1199–1209

    Article  CAS  Google Scholar 

  • Knight TA (1799) Experiments on the fecundation of vegetables. Philos Trans R Soc Lond 89:504–509

    Google Scholar 

  • Knox MR, Ellis THN (2001) Stability and inheritance of methylation states at PstI sites in Pisum. Mol Gen Genet 265:497–507

    CAS  Google Scholar 

  • Kozik A, Heidstra R, Horvath B, Kulikova O, Tikhonovich I, Ellis THN, van Kammen A, Lie TA, Bisseling T (1995) Pea lines carrying sym1 or sym2 can be nodulated by Rhizobium strains containing nodX; sym1 and sym2 are allelic. Plant Sci 108:41–49

    Article  CAS  Google Scholar 

  • Le May C, Jumel S, Schoeny A, Tivoli B (2008) Ascochyta blight development on a new winter pea genotype highly reactive to photoperiod under field conditions. Field Crops Res 111:32–38

    Google Scholar 

  • Lewis G, Schrirer B, Mackinder B, Lock M (eds) (2005) Legumes of the world. Royal Botanic Gardens, Kew

    Google Scholar 

  • Limpens E, Franken C, Smit P, Willemse J, Bisseling T, Geurts R (2003) LysM domain receptor kinases regulating rhizobial nod factor-induced infection. Science 302:630–633

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Knox MR, Ambrose MJ, Brown JKM, Ellis THN (1996) Comparative analysis of genetic diversity in pea assessed by RFLP and PCR-based methods. Theor Appl Genet 93:1103–1111

    Article  CAS  Google Scholar 

  • Macas J, Neumann P, Navrátilová A (2007) Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics 8:427

    Article  PubMed  Google Scholar 

  • Maxted N, Ambrose MJ (2001) Peas (Pisum L). In: Maxted N, Bennett SJ (eds) Plant genetic resources of legumes in the Mediterranean. Kluwer, Dordrecht, pp 181–190

    Google Scholar 

  • Mendel G (1866) Versuche über Pflanzen-Hybriden. Verhandlungen des Naturforschenden Vereins in Brünn 4:3–47. http://www.mendelweb.org/

  • Murfet IC (1973) Flowering in Pisum: a gene for high response to photoperiod. Heredity 31:157–164

    Article  Google Scholar 

  • Olby R (1985) Origins of Mendelism. University of Chicago Press, Chicago, IL [ISBN A4978]

    Google Scholar 

  • Pearce SP, Knox M, Ellis THN, Flavell AJ, Kumar A (2000) Pea Ty1-copia group retrotransposons: transpositional activity and use as markers to study genetic diversity in Pisum. Mol Gen Genet 263:898–907

    Article  PubMed  CAS  Google Scholar 

  • Perrier X, Flori A, Bonnot F (2003) Data analysis methods. In: Hamon P, Seguin M, Perrier X, Glaszmann JC (eds) Genetic diversity of cultivated tropical plants. Science, Enfield, NH, pp 43–47

    Google Scholar 

  • Pilet-Nayel ML, Muehlbauer FJ, McGee RJ, Kraft JM, Baranger A, Coyne CJ (2005) Consistent quantitative trait loci in pea for partial resistance to Aphanomyces euteiches isolates from the United States and France. Phytopathology 95:1287–1293

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly PJ (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Raquin A-L, Depaulis F, Lambert A, Galic N, Brabant P, Goldringer I (2008) Experimental estimation of mutation rates in a wheat population with a gene genealogy approach. Genetics 179:2195–2211

    Article  PubMed  Google Scholar 

  • Rubiales D, Fernandez-Aparicio M, Alejandro Perez-de-Luque A, Castillejo MA, Prats E, Sillero JC, Rispaila N, Fondevilla S (2009) Breeding approaches for crenate broomrape (Orobanche crenata Forsk.) management in pea (Pisum sativum L.). Pest Manag Sci 65:553–559

    Article  PubMed  CAS  Google Scholar 

  • Schroeder HE, Schotz AH, Wardley-Richardson T, Spencer D, Higgins TJV (1993) Transformation and regeneration of two cultivars of pea (Pisum sativum L). Plant Physiol 101:751–757

    Article  PubMed  CAS  Google Scholar 

  • Smýkal P, Hýbl M, Corander J, Jarkovský J, Flavell AJ, Griga M (2008a) Genetic diversity and population structure of pea (Pisum sativum L.) varieties derived from combined retrotransposon, microsatellite and morphological marker analysis. Theor Appl Genet 117:413–424

    Article  PubMed  Google Scholar 

  • Smýkal P, Horáèek J, Dostálová R, Hýbl M (2008b) Variety discrimination in pea (Pisum sativum L.) by molecular, biochemical and morphological markers. J Appl Genet 49:155–166

    Article  PubMed  Google Scholar 

  • Smýkal P, Coyne CJ, Ford R, Redden R, Flavell AJ, Hýbl M, Warkentin T, Burstin J, Duc G, Ambrose M, Ellis THN (2008c) Effort towards a world pea (Pisum sativum L.) germplasm core collection: the case for common markers and data compatibility. Pisum Genet 40:11–14

    Google Scholar 

  • Smýkal P, Šafářová D, Navrátil M, Dostalová R (2010) Marker assisted pea breeding: eIF4E allele specific markers to pea seed-borne mosaic virus (PSbMV) resistance. Mol Breed. doi:10.1007/s11032-009-9383-7

    Google Scholar 

  • Snoad B, Matthews P (1969) Neoplasms of the pea pod. In: Darlington CD, Lewis KR (eds) Chromosomes today. Oliver and Boyd, Edinburgh, pp 126–131

    Google Scholar 

  • Song J, Bradeen JM, Naess SK, Raasch JA, Wielgus SM, Haberlach GT, Liu J, Kuang H, Austin-Phillips S, Buell CR, Helgeson JP, Jiang J (2003) Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proc Natl Acad Sci USA 100:9128–9133

    Article  PubMed  CAS  Google Scholar 

  • Tar’an B, Zhang C, Warkentin T, Tullu A, Vandenberg A (2005) Genetic diversity among varieties and wild species accessions of pea (Pisum sativum L.) based on molecular markers, and morphological and physiological characters. Genome 48:257–272

    PubMed  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama Junko Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200

    Article  PubMed  CAS  Google Scholar 

  • Vershinin AV, Ellis THN (1999) Heterogeneity of the internal structure of PDR1, a family of TY1/copia-like retrotransposons in pea. Mol Gen Genet 262:703–713

    Article  PubMed  CAS  Google Scholar 

  • Vershinin AV, Allnutt TR, Knox MR, Ambrose MJ, Ellis THN (2003) Transposable elements reveal the impact of introgression, rather than transposition, in Pisum diversity, evolution and domestication. Mol Biol Evol 20:2067–2075

    Article  PubMed  CAS  Google Scholar 

  • Vigouroux Y, Jaqueth JS, Matsuoka Y, Smith OS, Beavis WD, Smith JSC, Doebley J (2002) Rate and pattern of mutation at microsatellite loci in maize. Mol Biol Evol 19:1251–1260

    PubMed  CAS  Google Scholar 

  • Westphal E (1974) Pulses in ethiopia, their taxonomy and agricultural significance. Versl Landbouwkundl Onderzoek, Wageningen

    Google Scholar 

  • Wojciechowski MF (2003) Reconstructing the phylogeny of legumes (Leguminosea:) an early 21st century perspective. In: Klitgaard BB, Bruneau A (eds) Advances in legume systematics 10 (higher level systematics). Royal Botanical Gardens, Kew, pp 5–35

    Google Scholar 

  • Young JPW, Matthews P (1982) A Distinct class of peas (Pisum sativum L.) from Afghanistan that show strain specificity for symbiotic Rhizobium. Heredity 48:203–210

    Article  Google Scholar 

  • Zhang R, Hwang S-F, Chang K-F, Gossen BD, Strelkov SE, Turnbull GD, Blade SF (2006) Genetic resistance to Mycosphaerella pinodes in 558 field pea accessions. Crop Sci 46:2409–2414

    Article  Google Scholar 

  • Zong X-X, Guan J-P, Wang S-M, Liu Q-C (2008) Genetic diversity among Chinese Pea (Pisum sativum L.) landraces as revealed by SSR markers. Acta Agron Sin 34: 1330–1338

    CAS  Google Scholar 

  • Zong X, Redden RJ, Liu Q, Wang S, Guan J, Liu J, Xu Y, Liu X, Gu J, Yan L, Ades P, Ford R (2009) Analysis of a diverse global Pisum sp. collection and comparison to a Chinese local collection with microsatellite markers. Theor Appl Genet 118:193–204

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank Andy Flavell, Mike Ambrose, and Julie Hofer for the helpful discussions, Julie Hofer for edits of this manuscript and Maggie Knox for the unpublished microsatellite scores and comments. I acknowledge the support to the European Commission (FOOD-CT-2004-506223) Defra (PCGIN AR0711) and BBSRC support for the John Innes Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. H. N. Ellis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ellis, T.H.N. (2011). Pisum. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14387-8_12

Download citation

Publish with us

Policies and ethics