Skip to main content

Abstract

The exact number of Phaseolus species currently recognized is not known; however, a reasonable estimate would be 50–60 species. Wild allied species of Phaseolus vulgaris L. was described in most of the countries of Central America and in the western countries of South America. The relationships of P. vulgaris with closer related species are discussed. Domestication of P. vulgaris occurred independently in Mesoamerica and the southern Andes resulting in two gene pools very clearly distinguished. Domesticated P. vulgaris has been submitted to important adaptations such as photoperiod insensitivity and adaptation to acid and low fertility soils. Traits related to the domestication syndrome on common bean as well as possible routes of dispersion of the domesticated P. vulgaris are presented. The advent of new accessible genomic technologies has opened new insights into elucidate aspects related to evolution, genetic diversity, genome organization, and complex traits in common bean. The availability of a growing pool of expressed sequence, quantitative trait loci (QTL) identification, single-nucleotide polymorphism (SNP) discovery, bacterial artificial chromosome libraries, physical maps, and whole-genome sequencing for the P. vulgaris will quickly move toward a realistic goal to link phenotypes to genome target regions that control traits of interest. Taking advantage of biotechnology and, as more genes are discovered, the development of transgenic plants became more accessible and realistic for plant breeding. Systems for genetic transformation have been achieved for both P. vulgaris and P. coccineus and it has been used for introduction of useful traits such as drought tolerance and virus resistance. In addition, efficient plant regeneration systems have been reported for P. lunatus and P. polyanthus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta-Gallegos JA, Kelly JD, Gepts P (2007) Prebreeding in common bean and use of genetic diversity from wild germplasm. Crop Sci 47:44–59

    Google Scholar 

  • Adam-Blondon A, Sévignac M, Dron M (1994) A genetic map of common bean to localize specific resistance genes against anthracnose. Genome 37:915–924

    PubMed  CAS  Google Scholar 

  • Aguilar OM, Riva O, Peltzer E (2004) Analysis of Rhizobium etli and of its symbiosis with wild Phaseolus vulgaris supports coevolution in centers of host diversification. Proc Natl Acad Sci USA 101:13548–13553

    PubMed  CAS  Google Scholar 

  • Aragão FJL, Faria JC (2009) First transgenic geminivirus resistant plant in the field. Nat Biotechnol 27:1086–1088

    PubMed  Google Scholar 

  • Aragão FJL, Rech EL (1997) Morphological factors influencing recovery of transgenic bean plants (Phaseolus vulgaris L.) of a carioca cultivar. Int J Plant Sci 158:157–163

    Google Scholar 

  • Aragão FJL, Barros LMG, Brasileiro ACM, Ribeiro SG, Smith FD, Sanford JC, Faria JC, Rech EL (1996) Inheritance of foreign genes in transgenic bean (Phaseolus vulgaris L.) co-transformed via particle bombardment. Theor Appl Genet 93:142–150

    Google Scholar 

  • Aragão FJL, Faria JC, Del Peloso MJ, Melo LC, Brondani RPV (2008) Common bean. In: Kole C, Hall TC (eds) Compendium of transgenic crop plants, vol 3, Legume grains and forages. Wiley-Blackwell, Chichester, pp 1–24

    Google Scholar 

  • Araya CM, Alleyne AT, Steadman JR, Eskridge KM, Coyne AP (2004) Phenotypic and genotypic characterization of Uromyces appendiculatus from Phaseolus vulgaris in the Americas. Plant Dis 88:830–836

    CAS  Google Scholar 

  • Arellano J, Fuentes SI, Castillo-España C, Hernandez G (2009) Regeneration of different cultivars of common bean (Phaseolus vulgaris L.) via indirect organogenesis. Plant Cell Tissue Organ Cult 96:11–18

    CAS  Google Scholar 

  • Beebe S, Lynch JN, Galwey N, Tohme J, Ochoa IA (1997) A geographical approach to identify phosphorus-efficient genotypes among landraces and wild ancestors of common beans. Euphytica 95:325–336

    Google Scholar 

  • Beebe S, Skroch PW, Tohme J, Duque MC, Pedraza F, Nienhuis J (2000) Structure of genetic diversity among common bean landraces of Middle American origin based on correspondence analysis of RAPD. Crop Sci 40:264–273

    Google Scholar 

  • Beebe SE, Rengifo J, Gaitan E, Duque MC, Tohme J (2001) Diversity and origin of Andean landraces of common bean. Crop Sci 41:854–862

    Google Scholar 

  • Beebe SE, Rojas-Pierce M, Yan X, Blair MW, Pedraza F, Muños F, Tohme J, Lynch JP (2006) Quantitative trait loci for root architecture traits correlated with phosphorus acquisition in common bean. Crop Sci 46:413–423

    CAS  Google Scholar 

  • Blair MW, Pedraza F, Buendia HF, Gaitán-Solís E, Beebe SE, Gepts P, Tohme J (2003) Development of a genome-wide anchored microsatellite map for common bean (Phaseolus vulgaris L.). Theor Appl Genet 107:1362–1374

    PubMed  CAS  Google Scholar 

  • Blair MW, Giraldo MC, Buendia HF, Tovar E, Duque MC, Beebe SE (2006a) Microsatellite marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Genet 113:100–109

    PubMed  CAS  Google Scholar 

  • Blair MW, Iriarte G, Beebe S (2006b) QTL analysis of yield traits in an advanced backcross population derived from a cultivated Anden x wild common bean (Phaseolus vulgaris L.) cross. Theor Appl Genet 112:1149–1163

    PubMed  CAS  Google Scholar 

  • Blair MW, Díaz JM, Hidalgo R, Díaz LM, Duque MC (2007) Microsatellite characterization of Andean races of common bean (Phaseolus vulgaris L.). Theor Appl Genet 116:29–43

    PubMed  CAS  Google Scholar 

  • Blair MW, Díaz LM, Buendía HF, Duque MC (2009a) Genetic diversity, seed size associations and population structure of a core collection of common beans (Phaseolus vulgaris L.). Theor Appl Genet 119:955–972

    PubMed  CAS  Google Scholar 

  • Blair MW, Torres MM, Giraldo MC, Pedraza F (2009b) Development and diversity of Andean-derived, gene-based microsatellites for common bean (Phaseolus vulgaris L.). BMC Plant Biol 9:100. doi:10.1186/1471-2229-9-100

    PubMed  Google Scholar 

  • Blair MW, Chaves A, Tofinõ A, Calderón JF, Palacio JD (2010) Extensive diversity and inter-genepool introgression in a world-wide collection of indeterminate snap bean accessions. Theor Appl Genet 120:1381–1391

    PubMed  Google Scholar 

  • Broughton WJ, Hernández G, Blair MW, Beebe S, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp.) – model food legumes. Plant Soil 252:55–128

    CAS  Google Scholar 

  • Burle ML (2008) Assessing the genetic diversity of common bean (Phaseolus vulgaris L.) landraces from Brazil: from genetic structure to landscape distribution. PhD Dissertation, University of California, Davis, CA, USA

    Google Scholar 

  • Chacón SMI, Pickersgill B, Debouck DG (2005) Domestication patterns in common bean (Phaseolus vulgaris L.) and the origin of the Mesoamerican and Andean cultivated races. Theor Appl Genet 110:432–444

    Google Scholar 

  • Checa OE, Blair MW (2008) Mapping QTL for climbing ability and component traits in common bean (Phaseolus vulgaris L.). Mol Breed 22:201–215

    CAS  Google Scholar 

  • Cichy KA, Blair MW, Galeano CHM, Snapp SS, Kelly JD (2009a) QTL analysis of root architecture traits and low phosphorus tolerance in an Andean bean population. Crop Sci 49:59–68

    CAS  Google Scholar 

  • Cichy KA, Caldas GV, Snapp SS, Blair MW (2009b) QTL analysis of seed iron, zinc, and phosphorus levels in an Andean bean population. Crop Sci 49:1742–1750

    CAS  Google Scholar 

  • Clercq J, Zambre M, Van Montagu M, Dillen W, Angenon G (2002) An optimized Agrobacterium-mediated transformation procedure for Phaseolus acutifolius A. Gray. Plant Cell Rep 21:333–340

    Google Scholar 

  • Cruz de Carvalho MH, Van Le B, Zuily-Fodil Y, Pham Thi AT, Van Tran Thanh K (2000) Efficient whole plant regeneration of common bean (Phaseolus vulgaris L.) using thin-cell-layer culture and silver nitrate. Plant Sci 159:223–232

    PubMed  CAS  Google Scholar 

  • Debouck DG (2000) Bioversity, ecology and genetic resources of Phaseolus beans – seven answered and unanswered questions. In: 7th MAFF international workshop of genetic resources, part I. Wild legumes. Japan-National Institute of Agrobiological Resources, Tsukuba, Japan, pp 95–123

    Google Scholar 

  • Debouck DG, Toro O, Paredes OM, Johnson WC, Gepts P (1993) Genetic diversity and ecological distribution of Phaseolus vulgaris in northwestern South America. Econ Bot 47:408–423

    Google Scholar 

  • Delgado-Salinas A, Bonet A, Gepts P (1988) The wild relative of Phaseolus vulgaris in Middle América. In: Gepts P (ed) Genetic resources of Phaseolus beans. Kluwer, Dordrecht, pp 163–184

    Google Scholar 

  • Delgado-Salinas A, Turley T, Richman A, Lavin M (1999) Phylogenetic analysis of the cultivated and wild species of Phaseolus (Fabaceae). Syst Bot 24:438–460

    Google Scholar 

  • Delgado-Sánchez P, Saucedo-Ruiz M, Guzmán-Maldonado SH, Villordo-Pineda E, González-Chavira M, Fraire-VelÁzquez SF, Acosta-Gallegos JA, Mora-Aviles A (2006) An organogenic plant regeneration system for common bean (Phaseolus vulgaris L.). Plant Sci 170:822–827

    Google Scholar 

  • Díaz LM, Blair MW (2006) Race structure within the Mesoamerican gene pool of common bean (Phaseolus vulgaris L.) as determined by microsatellite markers. Theor Appl Genet 114:143–154

    PubMed  Google Scholar 

  • Dillen W, De Clercq J, Groossens A, Van Montagu M, Angenon G (1997) Agrobacterium-mediated transformation of Phaseolus acutifolius A. Gray. Theor Appl Genet 94:151–158

    CAS  Google Scholar 

  • Doebley J (1989) Isozymic evidence and the evolution of crop plants. In: Soltis DE, Soltis PS (eds) Isozymes in plant biology. Dioscorides, Portland, OR, pp 165–191

    Google Scholar 

  • Emydgio BM, Antunes IF, Choer E, Nedel JL (2003) Eficiência de coeficientes de similaridade em genótipos de feijão mediante marcadores RAPD. Pesqui Agropecu Bras 38:243–250

    Google Scholar 

  • Evans AM (1976) Beans. In: Simmonds NW (ed) Evolution of crop plants. Longman, London, pp 168–172

    Google Scholar 

  • Fofana B, Jardin P, Baudoin JP (1999) Genetic diversity in the Lima bean (Phaseolus lunatus L.) as revealed by chloroplast DNA (cpDNA) variations. Genetic Resources and Crop Evolution 48:437–445

    Google Scholar 

  • Frei A, Blair MW, Cardona C, Beebe SE, Gu H, Dorn S (2005) QTL mapping of resistance to Thrips palmi Karny in common bean. Crop Sci 45:379–387

    CAS  Google Scholar 

  • Freitas FO (2006) Evidências genético-arqueológicas sobre a origem do feijão comum no Brasil. Pesqui Agropecu Bras 41:1199–1203

    Google Scholar 

  • Freyre R, Ríos R, Guzmán L, Debouck DG, Gepts P (1996) Ecogeographic distribution of Phaseolus spp. (Fabaceae) in Bolivia. Econ Bot 50:195–215

    Google Scholar 

  • Freyre R, Skroch P, Geffroy V, Adam-Blondon A-F, Shirmohamadali A, Johnson W, Llaca V, Nodari R, Pereira P, Tsai S-M, Tohme J, Dron M, Nienhuis J, Vallejos C, Gepts P (1998) Towards an integrated linkage map of common bean. 4. Development of a core map and alignment of RFLP maps. Theor Appl Genet 97:847–856

    CAS  Google Scholar 

  • Freytag GF, Debouck DG (2002) Taxonomy, distribution and ecology of the genus Phaseolus (Leguminosae-Papilionoideae) in North America, Mexico and Central America, Sida, Botanical Miscellany, No 23, Fort Worth, USA

    Google Scholar 

  • Gaitán-Solís E, Choi I-Y, Quigley C, Cregan P, Tohme J (2008) Single nucleotide polymorphisms in common bean: their discovery and genotyping using a multiplex detection system. Plant Genome 1:125–134

    Google Scholar 

  • Galeano CH, Fernández AC, Gómez M, Blair MW (2009) Single strand conformation polymorphism based SNP and Indel markers for genetic mapping and synteny analysis of common bean (Phaseolus vulgaris L.). BMC Genomics 10:629. doi:10.1186/1471-2164-10-629

    PubMed  Google Scholar 

  • Galván MZ, Lanteri AA, Menéndez-Sevillano MC, Balatti PA (2010) Molecular characterisation of wild populations and landraces of common bean from northwestern Argentina. Plant Biosyst. doi:10.1080/11263500903503942

    Google Scholar 

  • Geffroy V, Sicard D, de Oliveira J, Sévignac M, Cohen S et al (1999) Identification of an ancestral resistance gene cluster involved in the coevolution process between Phaseolus vulgaris and its fungal pathogen Colletotrichum lindemuthianum. Mol Plant Microbe Interact 12:774–784

    PubMed  CAS  Google Scholar 

  • Genga A, Allavena A (1991) Factors affecting morphogenesis from immature cotyledons of Phaseolus coccineus L. Plant Cell, Tissue and Organ Culture 27:189–196

    CAS  Google Scholar 

  • Gepts P (1988) A Middle American and an Andean common bean gene pool. In: Gepts P (ed) Genetic resources of Phaseolus beans. Kluwer, Dordrecht, pp 375–407

    Google Scholar 

  • Gepts P (1998) Origin and evolution of common bean: past events and recent trends. HortScience 33:1124–1130

    Google Scholar 

  • Gepts P, Bliss FA (1985) F1 hybrid weakness in the common bean: differential geographic origin suggests two gene pools in cultivated bean germplasm. J Hered 76:447–450

    Google Scholar 

  • Gepts P, Bliss FA (1988) Dissemination pathways of common bean (Phaseolus vulgaris, Fabaceae) deduced from phaseolin electrophoretic variability. II. Europe and Africa. Econ Bot 42:86–104

    Google Scholar 

  • Gepts P, Kmiecik K, Pereira P, Bliss FA (1988) Dissemination pathways of common bean (Phaseolus vulgaris, Fabaceae) deduced from phaseolin electrophoretic variability. I. The Americas. Econ Bot 42:73–85

    Google Scholar 

  • Gepts P, Aragão FJL, de Barros E, Blair MW, Brondani R, Broughton W, Galasso I, Hernández G, Kami J, Lariguet P, McClean P, Melotto M, Miklas P, Pauls P, Pedrosa-Harand A, Porch T, Sánchez F, Sparvoli F, Yu K (2008) Genomics of Phaseolus beans, a major source of dietary protein and micronutrients in the tropics. In: Moore PJ, Ming R (eds) Genomics of tropical crop plants. Springer, New York, pp 113–143

    Google Scholar 

  • Goedert WJ (1986) Solos dos Cerrados: tecnologias e estratégias de manejo. EMBRAPA-CPAC/Nobel, Brasília

    Google Scholar 

  • Gonzalez A, Lynch J, Tohme JM, Beebe SE, Macchiavelli RE (1995) Characters related to leaf photosynthesis in wild populations and landraces of common bean. Crop Sci 35:1468–1476

    Google Scholar 

  • Grisi MCM, Blair MW, Gepts P, Brondani C, Pereira PAA, Brondani RPV (2007) Genetic mapping of a new set of microsatellite markers in a reference common bean (Phaseolus vulgaris) population BAT93 x Jalo EEP558. Genet Mol Res 3:691–706

    Google Scholar 

  • Guzmán P, Gilbertson RL, Nodari R, Johnson WC, Temple SR, Mandala D, Mkandawire ABC, Gepts P (1995) Characterization of variability in the fungus Phaeoisariopsis griseola suggests coevolution with the common bean (Phaseolus vulgaris). Phytopathology 85:600–607

    Google Scholar 

  • Hanai LR, Campos T, Camargo LEA, Benchimol LL, Souza AP, Melotto M, Carbonell SAM, Chioratto AF, Consoli L, Formighieri EF, Bohrer MV, Tsai SM, Vieira MLC (2007) Development, characterization, and comparative analysis of polymorphism at common bean SSR loci isolated from genic and genomic source. Genome 50:266–277

    PubMed  CAS  Google Scholar 

  • Hanai LR, Santini L, Camargo LEA, Fungaro MHP, Gepts P, Tsai SM, Vieira MLC (2009) Extension of the core map of common bean with EST-SSR, RGA, AFLP, and putative functional markers. Mol Breed 25:25–45

    PubMed  Google Scholar 

  • Hanemann A, Schweizer GF, Cossu R, Wicker T, Röder MS (2009) Fine mapping, physical mapping and development of diagnostic markers for the Rrs2 scald resistance gene in barley. Theor Appl Genet 119:1507–1522

    PubMed  CAS  Google Scholar 

  • Harlan JR (1992) Crops and man. American Society of Agronomy, Madison, WI

    Google Scholar 

  • Hoehne FC (1937) Botânica e agricultura no Brasil no século XVI. Cia Editora Nacional, São Paulo, Brasil

    Google Scholar 

  • ISRIC (2010) World soil information. http://www.isric.org. Accessed 28 Feb 2010

  • Judd WS, Campbell CR, Kellogg EA, Stevens PF, Donoghue MJ (2008) Plant systematics: a phylogenetic approach. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Kami J, Velásquez VB, Debouck DG, Gepts P (1995) Identification of presumed ancestral DNA sequences of phaseolin in Phaseolus vulgaris. Proc Natl Acad Sci USA 92:1101–1104

    PubMed  CAS  Google Scholar 

  • Kanchiswamy CN, Maffei M (2008) Callus induction and shoot regeneration of Phaseolus lunatus L. cv. Wonder Bush and cv. Pole Sieva. Plant Cell Tissue Organ Cult 92:239–242

    Google Scholar 

  • Kaplan L (1981) What is the origin of the common bean? Econ Bot 35:240–254

    Google Scholar 

  • Kelly JD, Vallejo VA (2004) A comprehensive review of the major genes conditioning resistance to anthracnose in common bean. HortScience 39:1196–1207

    CAS  Google Scholar 

  • Koenig R, Gepts P (1989) Allozyme diversity in wild Phaseolus vulgaris: further evidence for two major centers of diversity. Theor Appl Genet 78:809–817

    Google Scholar 

  • Koinange EMK, Gepts P (1992) Hybrid weakness in wild Phaseolus vulgaris L. J Hered 83:135–139

    Google Scholar 

  • Koinange EMK, Singh SP, Gepts P (1996) Genetic control of the domestication syndrome in common-bean. Crop Sci 36:1037–1045

    Google Scholar 

  • Kumar AS, Gamborg OL, Nabors MW (1988) Regeneration from long-term cell suspension cultures of tepary bean (Phaseolus acutifolius). Plant Cell Rep 7:322–325

    CAS  Google Scholar 

  • Kwak M, Kami J, Gepts P (2009) The putative Mesoamerican domestication center of Phaseolus vulgaris is located in the Lerma-Santiago Basin of Mexico. Crop Sci 49:554–563

    Google Scholar 

  • Kwapata K, Sabzikar R, Sticklen MB, Kelly JD (2010) In vitro regeneration and morphogenesis studies in common bean. Plant Cell Tissue Organ Cult 100:97–105

    CAS  Google Scholar 

  • Léry J (1576) Viagem à terra a do Brasil Série. Documentos Históricos Caderno n. 10. Conselho Nacional da Reserva da Mata Atlântica, São Paulo, Brasil

    Google Scholar 

  • Liu Z, Park B-J, Kanno A, Kameya T (2005) The novel use of a combination of sonication and vacuum infiltration in Agrobacterium-mediated transformation of kidney bean (Phaseolus vulgaris L.) with lea gene. Mol Breed 16:189–197

    CAS  Google Scholar 

  • Logozzo G, Donnoli R, Macaluso L, Papa R, Knüpffer H, Spagnoletti Zeuli P (2007) Analysis of the contribution of Mesoamerican and Andean gene pools to European common bean (Phaseolus vulgaris L.) germplasm and strategies to establish a core collection. Genet Resour Crop Evol 54:1763–1779

    Google Scholar 

  • Lynch J, Gonzalez A, Tohme J, Garcia J (1992) Variation for characters related to leaf photosynthesis in wild bean populations. Crop Sci 32:633–640

    CAS  Google Scholar 

  • Maciel FL, Echeverrigara YS, Gerald LTS, Grazziotin FG (2003) Genetic relationships and diversity among Brazilian cultivars and landraces of common beans (Phaseolus vulgaris L.) revealed by AFLP markers. Genet Resour Crop Evol 50:887–893

    CAS  Google Scholar 

  • Mackie WW (1943) Origin, dispersal, and variability of the lima bean, Phaseolus lunatus. Hilgardia 15:1–29

    Google Scholar 

  • Malik KA, Saxena PK (1992) Regeneration in Phaseolus vulgaris L.: high-frequency induction of direct shoot formation in intact seedlings by N-benzylaminopurine and thidiazuron. Planta 186:84–389

    Google Scholar 

  • Marotti I, Bonetti A, Minelli M, Catizone P, Dinelli G (2007) Characterization of some Italian common bean (Phaseolus vulgaris L.) landraces by RAPD, semi-random and ISSR molecular markers. Genet Resour Crop Evol 54:175–188

    CAS  Google Scholar 

  • McClean P, Grafton KF (1989) Regeneration of dry bean (Phaseolus vulgaris) via organogenesis. Plant Sci 60:17–122

    Google Scholar 

  • McClean PE, Lavin M, Gepts P, Jackson SA (2008) Phaseolus vulgaris: a diploid model for soybean. In: Stacey G (ed) Genetics and genomics of soybean. Springer, New York, pp 55–76

    Google Scholar 

  • Mkandawire ABC, Mabagala RB, Guzman P, Gepts P, Gilbertson RL (2004) Genetic diversity and pathogenic variation of common blight bacteria (Xanthomonas campestris pv. phaseoli and X. campestris pv. phaseoli var. fuscans) suggests pathogen coevolution with the common bean. Phytopathology 94:593–603

    PubMed  CAS  Google Scholar 

  • Mohamed MF, Read PE, Coyne DP (1992) Plant regeneration from in vitro culture of embryonic axis explants in common and tepary beans. J Am Soc Hortic Sci 117:332–336

    Google Scholar 

  • Mohamed MF, Coyne DP, Read PE (1993) Shoot organogenesis in callus induced from pedicel explants of common bean (Phaseolus vulgaris L.). J Am Soc Hortic Sci 118:58–162

    Google Scholar 

  • Mohamed SV, Sung J-M, Jeng T-L, Wang C-S (2006) Organogenesis of Phaseolus angularis L.: high efficiency of adventitious shoot regeneration from etiolated seedlings in the presence of N6-benzylaminopurine and thidiazuron. Plant Cell Tissue Organ Cult 86:187–199

    Google Scholar 

  • Nagl W, Ignacimuthu S, Becker J (1997) Genetic engineering and regeneration of Phaseolus and Vigna. State of the art and new attempts. J Plant Physiol 150:625–644

    CAS  Google Scholar 

  • Nodari RO, Tsai SM, Gilbertson RL, Gepts P (1993a) Towards an integrated linkage map of common bean. II. Development of an RFLP-based linkage map. Theor Appl Genet 85:513–520

    CAS  Google Scholar 

  • Nodari RO, Tsai SM, Guzmán P, Gilbertson RL, Gepts P (1993b) Towards an integrated linkage map of common bean. III. Mapping genetic factors controlling host-bacteria interactions. Genetics 134:341–350

    PubMed  CAS  Google Scholar 

  • Ochoa IE, Blair MW, Lynch JP (2006) QTL analysis of adventitious root formation in common bean under contrasting phosphorus availability. Crop Sci 46:1609–1621

    CAS  Google Scholar 

  • Pallottini L, Garcia E, Kami J, Barcaccia G, Gepts P (2004) The genetic anatomy of a patented yellow bean. Crop Sci 44:968–977

    CAS  Google Scholar 

  • Papa R, Gepts P (2003) Asymmetry of gene flow and differential geographical structure of molecular diversity in wild and domesticated common bean (Phaseolus vulgaris L.) from Mesoamerica. Theor Appl Genet 106:239–250

    PubMed  CAS  Google Scholar 

  • Papa R, Acosta J, Delgado-Salinas A, Gepts P (2005) A genome-wide analysis of diff erentiation between wild and domesticated Phaseolus vulgaris from Mesoamerica. Theor Appl Genet 111:1147–1158

    PubMed  CAS  Google Scholar 

  • Pedrosa A, Vallejos CE, Bachmair A (2003) Integration of common bean (Phaseolus vulgaris L.) linkage and chromosomal maps. Theor Appl Genet 106:205–212

    PubMed  CAS  Google Scholar 

  • Pérez-Vega E, Pañeda A, Rodríguez-Suárez C, Giraldez ACR, Ferreira JJ (2009) Mapping of QTLs for morpho-agronomic and seed quality traits in a RIL population of common bean (Phaseolus vulgaris L.). Theor Appl Genet. doi:10.1007/s00122-010-1261-5

    Google Scholar 

  • Prous A, Junqueira PA, Malta IM (1984) Arqueologia do alto médio São Francisco. Região de Januária e Montalvânia. Rev Arqueol 2:59–72

    Google Scholar 

  • Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94100

    Google Scholar 

  • Singh SP (2001) Broadening the genetic base of common bean cultivars: a review. Crop Sci 41:1659–1675

    Google Scholar 

  • Singh SP, Molina A (1996) Inheritance of crippled trifoliate leaves occuring in interracial crosses of common bean and its relationship with hybrid dwarfism. J Hered 87:464–469

    Google Scholar 

  • Singh SP, Gepts P, Debouck DG (1991) Races of common bean (Phaseolus vulgaris L., Fabaceae). Econ Bot 45:379–396

    Google Scholar 

  • Sonnante G, Stockton T, Nodari RO, Becerra Velásquez VL, Gepts P (1994) Evolution of genetic diversity during domestication of common bean (Phaseolus vulgaris L.). Theor Appl Genet 89:629–635

    Google Scholar 

  • Toro O, Tohme J, Debouck DG (1990) Wild bean (Phaseolus vulgaris L.): description and distribution. International Board for Plant Genetic Resources (IBPGR) and Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia

    Google Scholar 

  • Vallejos CE, Sakiyama NS, Chase CD (1992) A molecular marker-based linkage map of Phaseolus vulgaris L. Genetics 131:733–740

    PubMed  CAS  Google Scholar 

  • Von Burkart A, Brücher H (1953) Phaseolus aborigineus BURKART, die mutmaßlische andine Stammform der Kulturbohne. Züchter 23:65–72

    Google Scholar 

  • Yu K, Park SJ, Poysa V, Gepts P (2000) Integration of simple sequence repeat (SSR) markers into a molecular linkage map of common bean (Phaseolus vulgaris L.). J Hered 91:429–434

    PubMed  CAS  Google Scholar 

  • Zambre M, Geerts P, Maquet A, Van Montagu M, Dillen W, Angenon G (2001) Regeneration of fertile plants from callus in Phaseolus polyanthus greenman (year bean). Ann Bot 88:371–377

    CAS  Google Scholar 

  • Zambre M, Goossens A, Cardona C, Van Montagu M, Terryn N, Angenon G (2005) A reproducible genetic transformation system for cultivated Phaseolus acutifolius (tepary bean) and its use to assess the role of arcelins in resistance to the Mexican bean weevil. Theor Appl Genet 110:914–924

    PubMed  CAS  Google Scholar 

  • Zhang X, Blair MW, Wang S (2008) Genetic diversity of Chinese common bean (Phaseolus vulgaris L.) landraces assessed with simple sequence repeat markers. Theor Appl Genet 117:629–640

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Dr. Paul Gepts (University of California, Davis) and Dr. Daniel Debouck (International Center for Tropical Agriculture) for pictures and respective comments on Fig. 11.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. L. Aragão .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aragão, F.J.L., Brondani, R.P.V., Burle, M.L. (2011). Phaseolus. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14387-8_11

Download citation

Publish with us

Policies and ethics