Skip to main content

Simulating Strongly Correlated Quantum Systems: Adaptive Time-Dependent Density-Matrix Renormalization Group

  • Chapter
  • First Online:
CFN Lectures on Functional Nanostructures - Volume 2

Part of the book series: Lecture Notes in Physics ((LNP,volume 820))

  • 786 Accesses

Abstract

The density-matrix renormalization group (DMRG) is arguably the most powerful numerical technique for the description of the static properties of strongly correlated one-dimensional bosonic and fermionic systems. In this contribution we discuss the extension of this method to the calculation of the dynamical out-of-equilibrium properties of such quantum systems, illustrating it in the context of spin-charge separation. This method opens up unprecedented possibilities for the calculation of transport properties, of time-dependent Hamiltonians such as in ultracold atomic systems, or of decoherence in many-body systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greiner, M., Mandel, O., Esslinger, T., Hänsch, T.W., Bloch, I.: Nature (London) 415, 39 (2002)

    Article  ADS  Google Scholar 

  2. Köhl, M., Moritz, H., Stöferle, T., Günter, K., Esslinger, T.: Phys. Rev. Lett. 94, 080403 (2005)

    Article  Google Scholar 

  3. White, S.R.: Phys. Rev. Lett. 69, 2863 (1992)

    Article  ADS  Google Scholar 

  4. White, S.R.: Phys. Rev. B 48, 10345 (1993)

    Article  ADS  Google Scholar 

  5. Schollwöck, U.: Rev. Mod. Phys. 77, 259 (2005)

    Article  ADS  Google Scholar 

  6. Peschel, I., et al. (eds.): Density-Matrix Renormalization. Springer, Berlin (1999)

    Google Scholar 

  7. Vidal, G.: Phys. Rev. Lett. 93, 040502 (2004)

    Article  ADS  Google Scholar 

  8. Daley, A.J., Kollath, C., Schollwöck, U., Vidal, G.: J. Stat. Mech.: Theor. Exp. P04005 (2004)

    Google Scholar 

  9. White, S.R., Feiguin, A.: Phys. Rev. Lett. 93, 076401 (2004)

    Article  ADS  Google Scholar 

  10. Feiguin, A., White, S.R.: Phys. Rev. B 72, 020404 (2005)

    Article  ADS  Google Scholar 

  11. Fannes, M., Nachtergaele, B., Werner, R.F.: Europhys. Lett. 10, 633 (1989)

    Article  ADS  Google Scholar 

  12. Fannes, M., Nachtergaele, B., Werner, R.F.: Comm. Math. Phys. 144, 3 (1992)

    Article  MathSciNet  Google Scholar 

  13. Klümper, A., Schadschneider, A., Zittartz, J.: Europhys. Lett. 24, 293 (1993)

    Article  ADS  Google Scholar 

  14. Östlund, S., Rommer, S.: Phys. Rev. Lett. 75, 3537 (1995)

    Article  ADS  Google Scholar 

  15. Dukelsky, J., Martin-Delgado, M.A., Nishino, T., Sierra, G.: Europhys. Lett. 43, 457 (1998)

    Article  ADS  Google Scholar 

  16. Takasaki, H., Hikihara, T., Nishino, T.: J. Phys. Soc. Jpn. 68, 1537 (1999)

    Article  ADS  MATH  Google Scholar 

  17. Verstraete, F., Porras, D., Cirac, J.I.: Phys. Rev. Lett. 93, 227205 (2004)

    Article  ADS  Google Scholar 

  18. White, S.R.: Phys. Rev. Lett. 77, 3633 (1996)

    Article  ADS  Google Scholar 

  19. White, S.R.: Phys. Rev. B 72, 180403 (2005)

    Article  ADS  Google Scholar 

  20. Latorre, J.I., Rico, E., Vidal, G.: Quantum Inf. Comut. 4, 48 (2004)

    MATH  MathSciNet  Google Scholar 

  21. Gaite, J.: quant-ph/0301120

    Google Scholar 

  22. Callan, C., Wilczek, F.: Phys. Lett. 333, 55 (1994)

    Article  MathSciNet  Google Scholar 

  23. Gaite, J.:Mod. Phys. Lett. A 16, 1109 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Verstraete, F., Cirac, J.I.: cond-mat/0407066

    Google Scholar 

  25. Kühner, T., White, S.R.: Phys. Rev. B 60, 335 (1999)

    Article  ADS  Google Scholar 

  26. Jeckelmann, E.: Phys. Rev. B 66, 045114 (2002)

    Article  ADS  Google Scholar 

  27. Cazalilla, M., Marston, B.: Phys. Rev. Lett. 88, 256403 (2002)

    Article  ADS  Google Scholar 

  28. Luo, H.G., Xiang, T., Wang, X.Q.: Phys. Rev. Lett. 91, 049701 (2003)

    Article  ADS  Google Scholar 

  29. Schmitteckert, P.: Phys. Rev. B 70, 121302 (2004)

    Article  ADS  Google Scholar 

  30. Vidal, G.: Phys. Rev. Lett. 91, 147902 (2003)

    Article  ADS  Google Scholar 

  31. Suzuki M.: Prog. Theor. Phys. 56, 1454 (1976)

    Article  ADS  MATH  Google Scholar 

  32. Kollath, C., Schollwöck, U., von Delft, J., Zwerger, W.: Phys. Rev. A 71, 053606 (2005)

    Article  ADS  Google Scholar 

  33. Kollath, C., Schollwöck, U., Zwerger, W.: Phys. Rev. Lett. 95, 176401 (2005)

    Article  ADS  Google Scholar 

  34. Trebst, S., Schollwöck, U., Troyer, M., Zoller, P.: Phys. Rev. Lett. 96, 250402 (2006)

    Article  ADS  Google Scholar 

  35. Gobert, D., Kollath, C., Schollwöck, U., Schütz, G.: Phys. Rev. E 71, 036102 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  36. Antal, T., Racz, Z., Rakos, A., Schütz, G.: Phys. Rev. E 59, 4912 (1999)

    Article  ADS  Google Scholar 

  37. Verstraete, F., Garcia-Rípoll, J.J., Cirac, J.I.: Phys. Rev. Lett. 93, 207204 (2004)

    Article  ADS  Google Scholar 

  38. Haldane, F.D.M.: J. Phys. C: Solid State Phys. 14, 2585 (1981)

    Article  ADS  Google Scholar 

  39. Haldane, F.D.M.: Phys. Rev. Lett. 47, 1840 (1981)

    Article  ADS  Google Scholar 

  40. Voit J.: Rep. Prog. Phys. 58, 977 (1995)

    Article  ADS  Google Scholar 

  41. Giamarchi, T.: Quantum Physics in One Dimension. Oxford University press, New York (2004)

    Google Scholar 

  42. Auslaender, O.M., et al.: Science 308, 88 (2005)

    Article  ADS  Google Scholar 

  43. Moritz, H., Stöferle, Th., Günter, K., Köhl, M., Esslinger, T.: Phys. Rev. Lett. 94, 210401 (2005)

    Article  ADS  Google Scholar 

  44. Recati, A., Fedichev, P.O., Zwerger, W., Zoller, P.: Phys. Rev. Lett. 90, 020401 (2003)

    Article  ADS  Google Scholar 

  45. Kecke, L., Grabert, H., Häusler, W.: Phys. Rev. Lett. 94, 176802 (2005)

    Article  ADS  Google Scholar 

  46. Hallberg, K., Aligia, A.A., Kampf, A.P., Normand, B.: Phys. Rev. Lett. 93, 067203 (2004)

    Article  ADS  Google Scholar 

  47. Lieb, E.H., Wu, F.Y.: Phys. Rev. Lett. 20, 1445 (1968)

    Article  ADS  Google Scholar 

  48. Shiba, H.: Phys. Rev. B 6, 930 (1972)

    Article  ADS  Google Scholar 

  49. Coll, C.F.: Phys. Rev. B 9, 2150 (1974)

    Article  ADS  Google Scholar 

  50. Schulz, H.J.: Phys. Rev. Lett. 64, 2831 (1990)

    Article  ADS  Google Scholar 

  51. Zwolak, M., Vidal, G.: Phys. Rev. Lett. 93, 207205 (2004)

    Article  ADS  Google Scholar 

  52. Bühler, A., Elstner, N., Uhrig, G.S.: Eur. Phys. J. B 16, 475 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Schollwöck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schollwöck, U. (2010). Simulating Strongly Correlated Quantum Systems: Adaptive Time-Dependent Density-Matrix Renormalization Group. In: Vojta, M., Röthig, C., Schön, G. (eds) CFN Lectures on Functional Nanostructures - Volume 2. Lecture Notes in Physics, vol 820. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14376-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14376-2_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14375-5

  • Online ISBN: 978-3-642-14376-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics