Skip to main content

V-ATPases: Rotary Engines for Transport and Traffic

  • Chapter
  • First Online:
Book cover Transporters and Pumps in Plant Signaling

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 7))

Abstract

Vacuolar-type H+-ATPases (V-ATPase), complex molecular machines that use rotary motion produced by ATP hydrolysis to pump protons across membranes, are essential for what can be defined as cellular logistics. The flow of goods between compartments of the eukaryotic cell is achieved either by protein-mediated membrane transport or via vesicular trafficking. Over the past years, it has become increasingly clear that V-ATPases do not only energize secondary active transport across a wide variety of membranes but are also important regulators of vesicle trafficking and protein targeting. In this chapter, we thus pay particular attention to the dual function of the V-ATPase in transport and trafficking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allan AK, Du J, Davies SA, Dow JA (2005) Genome-wide survey of V-ATPase genes in Drosophila reveals a conserved renal phenotype for lethal alleles. Physiol Genomics 22:128–138

    Article  PubMed  CAS  Google Scholar 

  • Aniento F, Gu F, Parton RG, Gruenberg J (1996) An endosomal beta COP is involved in the pH-dependent formation of transport vesicles destined for late endosomes. J Cell Biol 133:29–41

    Article  PubMed  CAS  Google Scholar 

  • Anraku Y, Umemoto N, Hirata R, Wada Y (1989) Structure and function of the yeast vacuolar membrane proton ATPase. J Bioenerg Biomembr 21:589–603

    Article  PubMed  CAS  Google Scholar 

  • Bageshwar UK, Taneja-Bageshwar S, Moharram HM, Binzel ML (2005) Two isoforms of the A subunit of the vacuolar H(+)-ATPase in Lycopersicon esculentum: highly similar proteins but divergent patterns of tissue localization. Planta 220:632–643

    Article  PubMed  CAS  Google Scholar 

  • Barkla BJ, Vera-Estrella R, Hernández-Coronado M, Pantoja O (2009) Quantitative proteomics of the tonoplast reveals a role for glycolytic enzymes in salt tolerance. Plant Cell 21:4044–4058

    Article  PubMed  CAS  Google Scholar 

  • Batelli G, Verslues PE, Agius F, Qiu Q, Fujii H, Pan S, Schumaker KS, Grillo S, Zhu J-K (2007) SOS2 promotes salt tolerance in part by interacting with the vacuolar H+-ATPase and upregulating its transport activity. Mol Cell Biol 27:7781–7790

    Article  PubMed  CAS  Google Scholar 

  • Bayer MJ, Reese C, Buhler S, Peters C, Mayer A (2003) Vacuole membrane fusion: V0 functions after trans-SNARE pairing and is coupled to the Ca2+-releasing channel. J Cell Biol 162:211–222

    Article  PubMed  CAS  Google Scholar 

  • Beyenbach KW, Wieczorek H (2006) The V-type H+ ATPase: molecular structure and function, physiological roles and regulation. J Exp Biol 209:577–589

    Article  PubMed  CAS  Google Scholar 

  • Carter C, Pan S, Zouhar J, Avila EL, Girke T, Raikhel NV (2004) The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell 16:3285–3303

    Article  PubMed  CAS  Google Scholar 

  • Cheng NH, Pittman JK, Barkla BJ, Shigaki T, Hirschi KD (2003) The Arabidopsis cax1 mutant exhibits impaired ion homeostasis, development, and hormonal responses and reveals interplay among vacuolar transporters. Plant Cell 15:347–364

    Article  PubMed  CAS  Google Scholar 

  • Cheng NH, Pittman JK, Shigaki T, Lachmansingh J, LeClere S, Lahner B, Salt DE, Hirschi KD (2005) Functional association of Arabidopsis CAX1 and CAX3 is required for normal growth and ion homeostasis. Plant Physiol 138:2048–2060

    Article  PubMed  CAS  Google Scholar 

  • Cho YH, Yoo SD, Sheen J (2006) Regulatory functions of nuclear hexokinase1 complex in glucose signaling. Cell 127:579–589

    Article  PubMed  CAS  Google Scholar 

  • Churchill KA, Sze H (1983) Anion-sensitive, H-pumping ATPase in membrane vesicles from oat roots. Plant Physiol 71:610–617

    Article  PubMed  CAS  Google Scholar 

  • Cruciat C-M, Ohkawara B, Acebron SP, Karaulanov E, Reinhard C, Ingelfinger D, Boutros M, Niehrs C (2010) Requirement of prorenin receptor and vacuolar H+-ATPase-mediated acidification for Wnt signaling. Science 327:459–463

    Google Scholar 

  • Davies JM, Hunt I, Sanders D (1994) Vacuolar H(+)-pumping ATPase variable transport coupling ratio controlled by pH. Proc Natl Acad Sci USA 91:8547–8551

    Article  PubMed  CAS  Google Scholar 

  • Davis-Kaplan SR, Compton MA, Flannery AR, Ward DM, Kaplan J, Stevens TH, Graham LA (2006) PKR1 encodes an assembly factor for the yeast V-type ATPase. J Biol Chem 281:32025–32035

    Article  PubMed  CAS  Google Scholar 

  • De Angeli A, Monachello D, Ephritikhine G, Frachisse JM, Thomine S, Gambale F, Barbier-Brygoo H (2006) The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles. Nature 442:939–942

    Article  PubMed  Google Scholar 

  • Dettmer J, Schubert D, Calvo-Weimar O, Stierhof Y-D, Schmidt R, Schumacher K (2005) Essential role of the V-ATPase in male gametophyte development. Plant J 41:117–124

    Article  PubMed  CAS  Google Scholar 

  • Dettmer J, Hong-Hermesdorf A, Stierhof YD, Schumacher K (2006) Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell 18:715–730

    Article  PubMed  CAS  Google Scholar 

  • Dettmer J, Liu T-Y, Schumacher K (2010) Functional analysis of Arabidopsis V-ATPase subunit VHA-E isoforms. Eur J Cell Biol 89:152–156

    Article  PubMed  CAS  Google Scholar 

  • Diepholz M, Venzke D, Prinz S, Batisse C, Flörchinger B, Rössle M, Svergun DI, Böttcher B, Féthière J (2008) A different conformation for EGC stator subcomplex in solution and in the assembled yeast V-ATPase: possible implications for regulatory disassembly. Structure 16:1789–1798

    Article  PubMed  CAS  Google Scholar 

  • Dietz KJ, Tavakoli N, Kluge C, Mimura T, Sharma SS, Harris GC, Chardonnens AN, Golldack D (2001) Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. J Exp Bot 52:1969–1980

    Article  PubMed  CAS  Google Scholar 

  • Drobny M, Schnölzer M, Fiedler S, Lüttge U, Fischer-Schliebs E, Christian A-L, Ratajczak R (2002) Phenotypic subunit composition of the tobacco (Nicotiana tabacum L.) vacuolar-type H(+)-translocating ATPase. Biochim Biophys Acta 1564:243–255

    Article  PubMed  CAS  Google Scholar 

  • Drory O, Nelson N (2006) The emerging structure of vacuolar ATPases. Physiology (Bethesda) 21:317–325

    Article  CAS  Google Scholar 

  • Endler A, Reiland S, Gerrits B, Schmidt UG, Baginsky S, Martinoia E (2009) In vivo phosphorylation sites of barley tonoplast proteins identified by a phosphoproteomic approach. Proteomics 9:310–321

    Article  PubMed  CAS  Google Scholar 

  • Fecht-Bartenbach JV, Bogner M, Krebs M, Stierhof YD, Schumacher K, Ludewig U (2007) Function of the anion transporter AtCLC-d in the trans-Golgi network. Plant J 50(3):466–474

    Article  PubMed  Google Scholar 

  • Feng Y, Forgac M (1992a) Cysteine 254 of the 73-kDa A subunit is responsible for inhibition of the coated vesicle (H+)-ATPase upon modification by sulfhydryl reagents. J Biol Chem 267:5817–5822

    PubMed  CAS  Google Scholar 

  • Feng Y, Forgac M (1992b) A novel mechanism for regulation of vacuolar acidification. J Biol Chem 267:19769–19772

    PubMed  CAS  Google Scholar 

  • Feng Y, Forgac M (1994) Inhibition of vacuolar H(+)-ATPase by disulfide bond formation between cysteine 254 and cysteine 532 in subunit A. J Biol Chem 269:13224–13230

    PubMed  CAS  Google Scholar 

  • Forgac M (1999) The vacuolar H+-ATPase of clathrin-coated vesicles is reversibly inhibited by S-nitrosoglutathione. J Biol Chem 274:1301–1305

    Article  PubMed  CAS  Google Scholar 

  • Gaxiola RA, Palmgren MG, Schumacher K (2007) Plant proton pumps. FEBS Lett 581:2204–2214

    Article  PubMed  CAS  Google Scholar 

  • Gogarten JP, Fichmann J, Braun Y, Morgan L, Styles P, Taiz SL, DeLapp K, Taiz L (1992) The use of antisense mRNA to inhibit the tonoplast H+ ATPase in carrot. Plant Cell 4:851–864

    PubMed  CAS  Google Scholar 

  • Graham LA, Hill KJ, Stevens TH (1998) Assembly of the yeast vacuolar H+-ATPase occurs in the endoplasmic reticulum and requires a Vma12p/Vma22p assembly complex. J Cell Biol 142:39–49

    Article  PubMed  CAS  Google Scholar 

  • Graham LA, Flannery AR, Stevens TH (2003) Structure and assembly of the yeast V-ATPase. J Bioenerg Biomembr 35:301–312

    Article  PubMed  CAS  Google Scholar 

  • Grüber G, Marshansky V (2008) New insights into structure-function relationships between archeal ATP synthase (A1A0) and vacuolar type ATPase (V1V0). Bioessays 30:1096–1109

    Google Scholar 

  • Hager A, Helmle M (1981) Properties of an ATP-fueled, Cl- dependent proton pump localized in membranes of microsomal vesicles from maize coleoptiles. Z Naturforsch 36c:997–1008

    CAS  Google Scholar 

  • Hedrich R, Kurkdjian A, Guern J, Flugge UI (1989) Comparative studies on the electrical properties of the H+ translocating ATPase and pyrophosphatase of the vacuolar-lysosomal compartment. EMBO J 8:2835–2841

    PubMed  CAS  Google Scholar 

  • Herman E, Li X, Su R, Larsen P, Hsu H, Sze H (1994) Vacuolar-Type H+ -ATPases are associated with the endoplasmic reticulum and provacuoles of root tip cells. Plant Physiol 106:1313–1324

    PubMed  Google Scholar 

  • Hernandez A, Jiang X, Cubero B, Nieto PM, Bressan RA, Hasegawa PM, Pardo JM (2009) Mutants of the Arabidopsis thaliana cation/H+ antiporter AtNHX1 conferring increased salt tolerance in yeast: the endosome/prevacuolar compartment is a target for salt toxicity. J Biol Chem 284:14276–14285

    Google Scholar 

  • Hiesinger PR, Fayyazuddin A, Mehta SQ, Rosenmund T, Schulze KL, Zhai RG, Verstreken P, Cao Y, Zhou Y, Kunz J, Bellen HJ (2005) The v-ATPase V0 subunit a1 is required for a late step in synaptic vesicle exocytosis in Drosophila. Cell 121:607–620

    Article  PubMed  CAS  Google Scholar 

  • Hill KJ, Stevens TH (1995) Vma22p is a novel endoplasmic reticulum-associated protein required for assembly of the yeast vacuolar H(+)-ATPase complex. J Biol Chem 270:22329–22336

    Article  PubMed  CAS  Google Scholar 

  • Hinton A, Bond S, Forgac M (2009) V-ATPase functions in normal and disease processes. Pflugers Arch 457:589–598

    Article  PubMed  CAS  Google Scholar 

  • Hirata R, Umemoto N, Ho MN, Ohya Y, Stevens TH, Anraku Y (1993) VMA12 is essential for assembly of the vacuolar H(+)-ATPase subunits onto the vacuolar membrane in Saccharomyces cerevisiae. J Biol Chem 268:961–967

    PubMed  CAS  Google Scholar 

  • Hirata R, Graham LA, Takatsuki A, Stevens TH, Anraku Y (1997) VMA11 and VMA16 encode second and third proteolipid subunits of the Saccharomyces cerevisiae vacuolar membrane H+-ATPase. J Biol Chem 272:4795–4803

    Article  PubMed  CAS  Google Scholar 

  • Hirata T, Iwamoto-Kihara A, Sun-Wada G-H, Okajima T, Wada Y, Futai M (2003) Subunit rotation of vacuolar-type proton pumping ATPase: relative rotation of the G and C subunits. J Biol Chem 278:23714–23719

    Article  PubMed  CAS  Google Scholar 

  • Hong-Hermesdorf A, Brüx A, Grüber A, Grüber G, Schumacher K (2006) A WNK kinase binds and phosphorylates V-ATPase subunit C. FEBS Lett 580:932–939

    Article  PubMed  CAS  Google Scholar 

  • Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O'Shea EK (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691

    Article  PubMed  CAS  Google Scholar 

  • Hurtado-Lorenzo A, Skinner M, El Annan J, Futai M, Sun-Wada G-H, Bourgoin S, Casanova J, Wildeman A, Bechoua S, Ausiello DA, Marshansky V (2006) V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway. Nat Cell Biol 8:124–136

    Google Scholar 

  • Imamura H, Takeda M, Funamoto S, Shimabukuro K, Yoshida M, Yokoyama K (2005) Rotation scheme of V1-motor is different from that of F1-motor. Proc Natl Acad Sci USA 102:17929–17933

    Article  PubMed  CAS  Google Scholar 

  • Jackson DD, Stevens TH (1997) VMA12 encodes a yeast endoplasmic reticulum protein required for vacuolar H+-ATPase assembly. J Biol Chem 272:25928–25934

    Article  PubMed  CAS  Google Scholar 

  • Jaquinod M, Villiers F, Kieffer-Jaquinod S, Hugouvieux V, Bruley C, Garin J, Bourguignon J (2007) A proteomics dissection of Arabidopsis thaliana vacuoles isolated from cell culture. Mol Cell Proteomics 6:394–412

    PubMed  CAS  Google Scholar 

  • Jentsch TJ (2007) Chloride and the endosomal-lysosomal pathway: emerging roles of CLC chloride transporters. J Physiol 578:633–640

    Article  PubMed  CAS  Google Scholar 

  • Kane PM (1999) Biosynthesis and regulation of the yeast vacuolar H+-ATPase. J Bioenerg Biomembr 31:49–56

    Article  PubMed  CAS  Google Scholar 

  • Kane PM (2006) The where, when, and how of organelle acidification by the yeast vacuolar H+-ATPase. Microbiol Mol Biol Rev 70:177–191

    Article  PubMed  CAS  Google Scholar 

  • Kane PM, Smardon AM (2003) Assembly and regulation of the yeast vacuolar H+-ATPase. J Bioenerg Biomembr 35:313–321

    Article  PubMed  CAS  Google Scholar 

  • Kane PM, Kuehn MC, Howald-Stevenson I, Stevens TH (1992) Assembly and targeting of peripheral and integral membrane subunits of the yeast vacuolar H(+)-ATPase. J Biol Chem 267:447–454

    PubMed  CAS  Google Scholar 

  • Kawamura Y, Arakawa K, Maeshima M, Yoshida S (2000) Tissue specificity of E subunit isoforms of plant vacuolar H(+)-ATPase and existence of isotype enzymes. J Biol Chem 275:6515–6522

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki-Nishi S, Bowers K, Nishi T, Forgac M, Stevens TH (2001) The amino-terminal domain of the vacuolar proton-translocating ATPase a subunit controls targeting and in vivo dissociation, and the carboxyl-terminal domain affects coupling of proton transport and ATP hydrolysis. J Biol Chem 276:47411–47420

    Article  PubMed  CAS  Google Scholar 

  • Kluge C, Lahr J, Hanitzsch M, Bolte S, Golldack D, Dietz K-J (2003) New insight into the structure and regulation of the plant vacuolar H+-ATPase. J Bioenerg Biomembr 35:377–388

    Article  PubMed  CAS  Google Scholar 

  • Kluge C, Seidel T, Bolte S, Sharma SS, Hanitzsch M, Satiat-Jeunemaitre B, Ross J, Sauer M, Golldack D, Dietz K-J (2004) Subcellular distribution of the V-ATPase complex in plant cells, and in vivo localisation of the 100 kDa subunit VHA-a within the complex. BMC Cell Biol 5:29

    Article  PubMed  Google Scholar 

  • Klychnikov OI, Li KW, Lill H, de Boer AH (2007) The V-ATPase from etiolated barley (Hordeum vulgare L.) shoots is activated by blue light and interacts with 14-3-3 proteins. J Exp Bot 58:1013–1023

    Article  PubMed  CAS  Google Scholar 

  • Konishi H, Maeshima M, Komatsu S (2005) Characterization of vacuolar membrane proteins changed in rice root treated with gibberellin. J Proteome Res 4:1775–1780

    Article  PubMed  CAS  Google Scholar 

  • Krebs M, Beyhl D, Görlich E, Al-Rasheid KAS, Marten I, Stierhof Y-D, Hedrich R, Schumacher K (2010) Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation. Proc Natl Acad Sci USA 107:3251–3256

    Article  PubMed  CAS  Google Scholar 

  • Li X, Su RT, Hsu HT, Sze H (1998) The molecular chaperone calnexin associates with the vacuolar H(+)-ATPase from oat seedlings. Plant Cell 10:119–130

    PubMed  CAS  Google Scholar 

  • Li J, Yang H, Peer WA, Richter G, Blakeslee J, Bandyopadhyay A, Titapiwantakun B, Undurraga S, Khodakovskaya M, Richards EL, Krizek B, Murphy AS, Gilroy S, Gaxiola R (2005) Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development. Science 310:121–125

    Article  PubMed  CAS  Google Scholar 

  • Liegeois S, Benedetto A, Garnier JM, Schwab Y, Labouesse M (2006) The V0-ATPase mediates apical secretion of exosomes containing Hedgehog-related proteins in Caenorhabditis elegans. J Cell Biol 173:949–961

    Article  PubMed  CAS  Google Scholar 

  • Lu M, Sautin YY, Holliday LS, Gluck SL (2004) The glycolytic enzyme aldolase mediates assembly, expression, and activity of vacuolar H+-ATPase. J Biol Chem 279:8732–8739

    Article  PubMed  CAS  Google Scholar 

  • Lu M, Ammar D, Ives H, Albrecht F, Gluck SL (2007) Physical interaction between aldolase and vacuolar H+-ATPase is essential for the assembly and activity of the proton pump. J Biol Chem 282:24495–24503

    Article  PubMed  CAS  Google Scholar 

  • Ludwig J, Kerscher S, Brandt U, Pfeiffer K, Getlawi F, Apps DK, Schagger H (1998) Identification and characterization of a novel 9.2-kDa membrane sector-associated protein of vacuolar proton-ATPase from chromaffin granules. J Biol Chem 273:10939–10947

    Article  PubMed  CAS  Google Scholar 

  • Maeshima M (2000) Vacuolar H(+)-pyrophosphatase. Biochim Biophys Acta 1465:37–51

    Article  PubMed  CAS  Google Scholar 

  • Malkus P, Graham LA, Stevens TH, Schekman R (2004) Role of Vma21p in assembly and transport of the yeast vacuolar ATPase. Mol Biol Cell 15:5075–5091

    Article  PubMed  CAS  Google Scholar 

  • Manolson MF, Proteau D, Preston RA, Stenbit A, Roberts BT, Hoyt MA, Preuss D, Mulholland J, Botstein D, Jones EW (1992) The VPH1 gene encodes a 95-kDa integral membrane polypeptide required for in vivo assembly and activity of the yeast vacuolar H(+)-ATPase. J Biol Chem 267:14294–14303

    PubMed  CAS  Google Scholar 

  • Manolson MF, Wu B, Proteau D, Taillon BE, Roberts BT, Hoyt MA, Jones EW (1994) STV1 gene encodes functional homologue of 95-kDa yeast vacuolar H(+)-ATPase subunit Vph1p. J Biol Chem 269:14064–14074

    PubMed  CAS  Google Scholar 

  • Maranda B, Brown D, Bourgoin S, Casanova JE, Vinay P, Ausiello DA, Marshansky V (2001) Intra-endosomal pH-sensitive recruitment of the Arf-nucleotide exchange factor ARNO and Arf6 from cytoplasm to proximal tubule endosomes. J Biol Chem 276:18540–18550

    Article  PubMed  CAS  Google Scholar 

  • Martinoia E, Maeshima M, Neuhaus HE (2007) Vacuolar transporters and their essential role in plant metabolism. J Exp Bot 58:83–102

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka K, Higuchi T, Maeshima M, Nakamura K (1997) A vacuolar-type H+-ATPase in a nonvacuolar organelle is required for the sorting of soluble vacuolar protein precursors in tobacco cells. Plant Cell 9:533–546

    PubMed  CAS  Google Scholar 

  • Merzendorfer H, Huss M, Schmid R, Harvey WR, Wieczorek H (1999) A novel insect V-ATPase subunit M9.7 is glycosylated extensively. J Biol Chem 274:17372–17378

    Article  PubMed  CAS  Google Scholar 

  • Miller AJ, Fan X, Orsel M, Smith SJ, Wells DM (2007) Nitrate transport and signalling. J Exp Bot 58:2297–2306

    Article  PubMed  CAS  Google Scholar 

  • Muench SP, Huss M, Song CF, Phillips C, Wieczorek H, Trinick J, Harrison MA (2009) Cryo-electron microscopy of the vacuolar ATPase motor reveals its mechanical and regulatory complexity. J Mol Biol 386:989–999

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi Y, Maeshima M (1998) Molecular cloning of vacuolar H(+)-pyrophosphatase and its developmental expression in growing hypocotyl of mung bean. Plant Physiol 116:589–597

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi-Matsui M, Sekiya M, Nakamoto RK, Futai M (2010) The Mechanism of Rotating Proton Pumping ATPases. Biochim Biophys Acta 1797:1343-1352

    Google Scholar 

  • Neubert C, Graham LA, Black-Maier EW, Coonrod EM, Liu T-Y, Stierhof Y-D, Seidel T, Stevens TH, Schumacher K (2008) Arabidopsis has two functional orthologs of the yeast V-ATPase assembly factor Vma21p. Traffic 9:1618–1628

    Article  PubMed  CAS  Google Scholar 

  • Padmanaban S, Lin X, Perera I, Kawamura Y, Sze H (2004) Differential expression of vacuolar H+-ATPase subunit c genes in tissues active in membrane trafficking and their roles in plant growth as revealed by RNAi. Plant Physiol 134:1514–1526

    Article  PubMed  CAS  Google Scholar 

  • Parra KJ, Kane PM (1998) Reversible association between the V1 and V0 domains of yeast vacuolar H+-ATPase is an unconventional glucose-induced effect. Mol Cell Biol 18:7064–7074

    PubMed  CAS  Google Scholar 

  • Parra KJ, Keenan KL, Kane PM (2000) The H subunit (Vma13p) of the yeast V-ATPase inhibits the ATPase activity of cytosolic V1 complexes. J Biol Chem 275:21761–21767

    Article  PubMed  CAS  Google Scholar 

  • Qi J, Wang Y, Forgac M (2007) The vacuolar (H+)-ATPase: subunit arrangement and in vivo regulation. J Bioenerg Biomembr 39:423–426

    Google Scholar 

  • Ramachandran N, Munteanu I, Wang P, Aubourg P, Rilstone JJ, Israelian N, Naranian T, Paroutis P, Guo R, Ren Z-P, Nishino I, Chabrol B, Pellissier J-F, Minetti C, Udd B, Fardeau M, Tailor CS, Mahuran DJ, Kissel JT, Kalimo H, Levy N, Manolson MF, Ackerley CA, Minassian BA (2009) VMA21 deficiency causes an autophagic myopathy by compromising V-ATPase activity and lysosomal acidification. Cell 137:235–246

    Article  PubMed  CAS  Google Scholar 

  • Sambade M, Kane PM (2004) The yeast vacuolar proton-translocating ATPase contains a subunit homologous to the Manduca sexta and bovine e subunits that is essential for function. J Biol Chem 279:17361–17365

    Article  PubMed  CAS  Google Scholar 

  • Sambongi Y, Iko Y, Tanabe M, Omote H, Iwamoto-Kihara A, Ueda I, Yanagida T, Wada Y, Futai M (1999) Mechanical rotation of the c subunit oligomer in ATP synthase (F0F1): direct observation. Science 286:1722–1724

    Article  PubMed  CAS  Google Scholar 

  • Saroussi S, Nelson N (2009) The little we know on the structure and machinery of V-ATPase. J Exp Biol 212:1604–1610

    Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  PubMed  CAS  Google Scholar 

  • Schumacher K, Vafeados D, McCarthy M, Sze H, Wilkins T, Chory J (1999) The Arabidopsis det3 mutant reveals a central role for the vacuolar H(+)-ATPase in plant growth and development. Genes Dev 13:3259–3270

    Article  PubMed  CAS  Google Scholar 

  • Schumaker KS, Sze H (1987) Decrease of pH gradients in tonoplast vesicles by NO(3) and Cl: evidence for H-coupled anion transport. Plant Physiol 83:490–496

    Article  PubMed  CAS  Google Scholar 

  • Seidel T, Schnitzer D, Golldack D, Sauer M, Dietz K-J (2008) Organelle-specific isoenzymes of plant V-ATPase as revealed by in vivo-FRET analysis. BMC Cell Biol 9:28

    Article  PubMed  Google Scholar 

  • Seoighe C, Gehring C (2004) Genome duplication led to highly selective expansion of the Arabidopsis thaliana proteome. Trends Genet 20:461–464

    Article  PubMed  CAS  Google Scholar 

  • Seol JH, Shevchenko A, Shevchenko A, Deshaies RJ (2001) Skp1 forms multiple protein complexes, including RAVE, a regulator of V-ATPase assembly. Nat Cell Biol 3:384–391

    Article  PubMed  CAS  Google Scholar 

  • Smardon AM, Kane PM (2007) RAVE is essential for the efficient assembly of the C subunit with the vacuolar H(+)-ATPase. J Biol Chem 282:26185–26194

    Article  PubMed  CAS  Google Scholar 

  • Smardon AM, Tarsio M, Kane PM (2002) The RAVE complex is essential for stable assembly of the yeast V-ATPase. J Biol Chem 277:13831–13839

    Article  PubMed  CAS  Google Scholar 

  • Sze H, Schumacher K, Müller ML, Padmanaban S, Taiz L (2002) A simple nomenclature for a complex proton pump: VHA genes encode the vacuolar H(+)-ATPase. Trends Plant Sci 7:157–161

    Article  PubMed  CAS  Google Scholar 

  • Tavakoli N, Kluge C, Golldack D, Mimura T, Dietz KJ (2001) Reversible redox control of plant vacuolar H+-ATPase activity is related to disulfide bridge formation in subunit E as well as subunit A. Plant J 28:51–59

    Article  PubMed  CAS  Google Scholar 

  • Toyomura T, Murata Y, Yamamoto A, Oka T, Sun-Wada GH, Wada Y, Futai M (2003) From lysosomes to the plasma membrane: localization of vacuolar-type H+ -ATPase with the a3 isoform during osteoclast differentiation. J Biol Chem 278:22023–22030

    Article  PubMed  CAS  Google Scholar 

  • Viotti C, Bubeck J, Stierhof YD, Krebs M, Langhans M, van den Berg W, van Dongen W, Richter S, Geldner N, Takano J, de Vries S, Juergens G, Schumacher K (2010) Endocytic and Secretory Traffic in Arabidopsis Merge in the Trans-Golgi Network/Early Endosome, an Independent and Highly Dynamic Organelle. Plant Cell 22:1344–1357

    Google Scholar 

  • Voss M, Vitavska O, Walz B, Wieczorek H, Baumann O (2007) Stimulus-induced phosphorylation of vacuolar H(+)-ATPase by protein kinase A. J Biol Chem 282:33735–33742

    Article  PubMed  CAS  Google Scholar 

  • Walker R, Leigh R (1981) Characterization of a salt-stimulated ATPase activity associated with vacuoles isolated from storage roots of red beet (Beta vulgaris L.). Planta 153:140–149

    Article  CAS  Google Scholar 

  • Wassmer T, Kissmehl R, Cohen J, Plattner H (2006) Seventeen a-subunit isoforms of paramecium V-ATPase provide high specialization in localization and function. Mol Biol Cell 17:917–930

    Article  PubMed  CAS  Google Scholar 

  • Xu T, Forgac M (2001) Microtubules are involved in glucose-dependent dissociation of the yeast vacuolar [H+]-ATPase in vivo. J Biol Chem 276:24855–24861

    Article  PubMed  CAS  Google Scholar 

  • Yan Y, Denef N, Schüpbach T (2009) The vacuolar proton pump, V-ATPase, is required for notch signaling and endosomal trafficking in Drosophila. Dev Cell 17:387–402

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Schumacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schumacher, K., Krebs, M. (2011). V-ATPases: Rotary Engines for Transport and Traffic. In: Geisler, M., Venema, K. (eds) Transporters and Pumps in Plant Signaling. Signaling and Communication in Plants, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14369-4_10

Download citation

Publish with us

Policies and ethics