Advertisement

Computing Exact and Approximate Nash Equilibria in 2-Player Games

  • Vittorio Bilò
  • Angelo Fanelli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6124)

Abstract

The problem of computing a Nash equilibrium in a normal form 2-player game (or bimatrix games) is PPAD-complete in general, while it can be efficiently solved in a special subclass which we call regular bimatrix games. The current best approximation algorithm, proposed in [19], achieves a guarantee of 0.3393. In this paper we design a polynomial time algorithm for computing exact and approximate Nash equilibria for bimatrix games. The novelty of this contribution is twofold. For regular bimatrix games, it allows to compute equilibria whose payoffs optimize any objective function and meet any set of constraints which can be expressed through linear programming, while, in the general case, it computes α-approximate Nash equilibria, where α is the maximum difference between any two payoffs in the same strategy of any player. Hence, our algorithm improves the best know approximation guarantee for the bimatrices in which α< 0.3393.

Keywords

Nash Equilibrium Mixed Strategy Pure Strategy Approximation Guarantee Generic Nash Equilibrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbott, T., Kane, D., Valiant, P.: On the Complexity of Two-player Win-lose Games. In: Proc. of the 46th Annual IEEE Symposium on Fondations of Computer Science (FOCS), pp. 113–122. IEEE Computer Society, Los Alamitos (2005)CrossRefGoogle Scholar
  2. 2.
    Addario-Berry, L., Olver, N., Vetta, A.: A Polynomial Time Algorithm for Finding Nash Equilibria in Planar Win-Lose Games. Journal of Graph Algorithms and Applications 11(1), 309–319 (2007)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Bosse, H., Byrka, J., Markakis, E.: New Algorithms for Approximate Nash Equilibria in Bimatrix Games. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 17–29. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Chen, X., Deng, X.: Settling the Complexity of 2-Player Nash Equilibrium. In: Proc. of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 252–261. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  5. 5.
    Chen, X., Deng, X., Teng, S.H.: Computing Nash Equilibria: Approximation and Smoothed Complexity. In: Proc. of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 603–612. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  6. 6.
    Chen, X., Teng, S., Valiant, P.: The Approximation Complexity of Win-Lose Games. In: Proc. of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 159–168. SIAM, Philadelphia (2007)Google Scholar
  7. 7.
    Codenotti, B., Leoncini, M., Resta, G.: Efficient Computation of Nash Equilibria for Very Sparse Win-Lose Bimatrix Games. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 232–243. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Daskalakis, K., Goldberg, P.W., Papadimitriou, C.H.: The Complexity of Computing a Nash Equilibrium. In: Proc. of the 38th Annual ACM Symposium on Theory of Computing (STOC), pp. 71–78. ACM Press, New York (2006)Google Scholar
  9. 9.
    Daskalakis, K., Mehta, A., Papadimitriou, C.H.: A Note on Approximate Nash Equilibria. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 297–306. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Daskalakis, K., Mehta, A., Papadimitriou, C.H.: Progress in Approximate Nash Equilibria. In: Proc. of the 8th ACM Conference on Electronic Commerce (EC), pp. 355–358. ACM Press, New York (2007)CrossRefGoogle Scholar
  11. 11.
    Daskalakis, K., Papadimitriou, C.H.: Three-Player Games Are Hard. In: Electronic Colloquium on Computational Complexity (ECCC), vol. (139) (2005)Google Scholar
  12. 12.
    Feder, T., Nazerzadeh, H., Saberi, A.: Personal CommunicationGoogle Scholar
  13. 13.
    Kontogiannis, S.C., Panagopoulou, P.N., Spirakis, P.G.: Polynomial Algorithms for Approximating Nash Equilibria of Bimatrix Games. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 286–296. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Lemke, C., Howson, J.: Equilibrium Points of Bimatrix Games. Journal of the Society of Industrial and Applied Mathematics 12, 413–423 (1964)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Lipton, R., Markakis, E., Mehta, A.: Playing Large Games Using Simple Strategies. In: Proc. of the 4th ACM Conference on Electronic Commerce (EC), pp. 36–41. ACM Press, New York (2003)CrossRefGoogle Scholar
  16. 16.
    Porter, R., Nudelman, E., Shoham, Y.: Simple Search Methods for Finding a Nash Equilibrium. In: Proc. of the 19th National Conference on Artificial Intelligence (AAAI), pp. 664–669. MIT Press, Cambridge (2004)Google Scholar
  17. 17.
    Sandholm, T., Gilpin, A., Conitzer, V.: Mixed-Integer Programming Methods for Finding Nash Equilibria. In: Proc. of the 20th National Conference on Artificial Intelligence (AAAI), pp. 495–501. MIT Press, Cambridge (2005)Google Scholar
  18. 18.
    Savani, R., von Stengel, B.: Exponentially Many Steps for Finding a Nash Equilibrium in a Bimatrix Game. In: Proc. of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 258–267. IEEE Computer Society, Los Alamitos (2004)CrossRefGoogle Scholar
  19. 19.
    Tsaknakis, H., Spirakis, P.: An Optimization Approach for Approximate Nash Equilibria. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 42–56. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Tsaknakis, H., Spirakis, P., Kanoulas, D.: Performance Evaluation of a Descent Algorithm for Bimatrix Games. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 222–230. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Vittorio Bilò
    • 1
  • Angelo Fanelli
    • 2
  1. 1.Department of MathematicsUniversity of SalentoLecceItaly
  2. 2.School of Physical and Mathematical SciencesNanyang Technological UniversitySingapore

Personalised recommendations