Extended Tabu Search on Fuzzy Traveling Salesman Problem in Multi-criteria Analysis

  • Yujun Zheng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6124)


The paper proposes an extended tabu search algorithm for the traveling salesman problem (TSP) with fuzzy edge weights. The algorithm considers three important fuzzy ranking criteria including expected value, optimistic value and pessimistic value, and performs a three-stage search towards the Pareto front, involving a preferred criterion at each stage. Simulations demonstrate that our approach can produce a set of near optimal solutions for fuzzy TSP instances with up to 750 uniformly randomly generated nodes.


Tabu search traveling salesman problem fuzzy optimization multi-criteria decision making 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Johnson, D.S., Gutin, G., McGeoch, L.A., Yeo, A., Zhang, W., Zverovich, A.: The Traveling Salesman Problem and Its Variations. Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  2. 2.
    Kwang, H.L., Lee, J.H.: A method for ranking fuzzy numbers and its application to decision making. IEEE Trans. Fuzzy Sys. 7, 677–685 (1999)CrossRefGoogle Scholar
  3. 3.
    Glover, F.: Tabu search, part I. ORSA J. Comput. 1, 190–206 (1989)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Glover, F.: Tabu search, part II. ORSA J. Comput. 2, 4–32 (1990)zbMATHGoogle Scholar
  5. 5.
    Homaifar, A., Guan, S., Liepins, G.E.: A new approach on the traveling salesman problem by genetic algorithms. In: 5th Int’l Conf. Genetic Algorithms, San Francisco, USA, pp. 460–466 (1993)Google Scholar
  6. 6.
    Snyder, L.V., Daskin, M.S.: A random-key genetic algorithm for the generalized traveling salesman problem. European J. Oper. Res. 174, 38–53 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Pepper, J., Golden, B., Wasil, E.: Solving the traveling salesman problem with annealing-based heuristics: a computational study. IEEE Trans. Sys. Man. Cyber., Part A 32, 72–77 (2002)CrossRefGoogle Scholar
  8. 8.
    Knox, J.: Tabu search performance on the symmetric traveling salesman problem. Comput. Oper. Res. 21, 867–876 (1994)zbMATHCrossRefGoogle Scholar
  9. 9.
    Misevicius, A.: Using iterated tabu search for the traveling salesman problem. Inform. Tech. Control 32, 29–40 (2004)Google Scholar
  10. 10.
    Basu, S., Ghosh, D.: A review of the tabu search literature on traveling salesman problems. In: IIMA Working Papers 2008-10-01, Indian Institute of Management Ahmedabad (2008)Google Scholar
  11. 11.
    Hasegawa, M., Ikeguchi, T., Aihara, K.: Solving large scale traveling salesman problems by chaotic neurodynamics. Neural Networks 15, 271–283 (2002)CrossRefGoogle Scholar
  12. 12.
    Leipala, T.: On the solutions of stochastic traveling salesman problems. European J. Oper. Res. 2, 291–297 (1978)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Gendreau, M., Laporte, G., Seguin, R.: A tabu search heuristic for the vehicle routing problem with stochastic demands and customers. Oper. Res. 44, 469–477 (1996)zbMATHCrossRefGoogle Scholar
  14. 14.
    Choi, J., Lee, J.H., Realff, M.J.: An algorithmic framework for improving heuristic solutions: Part II. A new version of the stochastic traveling salesman problem. Comput. Chem. Eng. 28, 1297–1307 (2004)CrossRefGoogle Scholar
  15. 15.
    Jimenez, F., Cadenas, J.M., Sanchez, G., Gomez-Skarmeta, A.F., Verdegay, J.L.: Multi-objective evolutionary computation and fuzzy optimization. Int. J. Approx. Reasoning 43, 59–75 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Ulungu, E.L., Teghem, J.: Multi-objective combinatorial optimization problems: A survey. J. Multi-Criteria Decision Anal. 3, 83–104 (1994)zbMATHCrossRefGoogle Scholar
  17. 17.
    Yan, Z., Zhang, L., Kang, L., Lin, G.: A new MOEA for multi-objective TSP and its convergence property analysis. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 342–354. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Gaspar-Cunha, A.: A multi-objective evolutionary algorithm for solving traveling salesman problems: Application to the design of polymer extruders. In: 7th Int’l Conf. Adaptive & Natural Computing Algorithms, Coimbra, Portugal, pp. 189–193 (2005)Google Scholar
  19. 19.
    Jozefowiez, N., Glover, F., Laguna, M.: Multi-objective meta-heuristics for the traveling salesman problem with profits. J. Math. Model. Algor. 7, 177–195 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Samanlioglu, F., Ferrell, W.G., Kurz, M.E.: A memetic random-key genetic algorithm for a symmetric multi-objective traveling salesman problem. Comput. Ind. Eng. 55, 439–449 (2008)CrossRefGoogle Scholar
  21. 21.
    Fonseca, C.M., Fleming, P.J.: An overview of evolutionary algorithms in multiobjective optimization. Evolutionary Computation 3, 1–16 (1995)CrossRefGoogle Scholar
  22. 22.
    Hansen, M.P.: Tabu search for multiobjective optimization: MOTS. In: 13th Int’l Conf. Multi Criteria Decision Making, Cape Town, South Africa (1997)Google Scholar
  23. 23.
    Kulturel-Konak, S., Smith, A.E., Norman, B.A.: Multi-objective tabu search using a multinomial probability mass function. Eur. J. Oper. Res. 169, 915–931 (2006)MathSciNetGoogle Scholar
  24. 24.
    Alves, M.J., Clomaco, J.: An interactive method for 0-1 multiobjective problems using simulated annealing and tabu search. J. of Heuristics 6, 385–403 (2000)zbMATHCrossRefGoogle Scholar
  25. 25.
    Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Set. Sys. 1, 3–28 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Liu, B., Liu, Y.K.: Expected value of fuzzy variable and fuzzy expected value models. IEEE Tran. Fuzzy Sys. 10, 445–450 (2002)CrossRefGoogle Scholar
  27. 27.
    Liu, B.: Uncertainty Theory, 2nd edn. Springer, Berlin (2007)zbMATHGoogle Scholar
  28. 28.
    Cheng, C.H.: A new approach for ranking fuzzy numbers by distance method. Fuzzy Set. Sys. 95, 307–317 (1998)zbMATHCrossRefGoogle Scholar
  29. 29.
    Chu, T.C., Tsao, C.T.: Ranking fuzzy numbers with an area between the centroid point and original point. Comput. Math. Appl. 43, 111–117 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Chen, S.J., Chen, S.M.: Fuzzy risk analysis based on the ranking of generalized trapezoidal fuzzy numbers. Appl. Intell. 26, 1–11 (2007)CrossRefGoogle Scholar
  31. 31.
    Ramli, N., Mohamad, D.: A comparative analysis of centroid methods in ranking fuzzy numbers. European J. Sci. Res. 28, 492–501 (2009)Google Scholar
  32. 32.
    Chen, S.J., Hwang, C.L.: Fuzzy multiple attribute decision making methods and applications. Springer, New York (1992)zbMATHGoogle Scholar
  33. 33.
    Tsubakitani, S., Evans, J.R.: Optimizing tabu list size for the traveling salesman problem. Comput. Oper. Res. 25, 91–97 (1998)zbMATHCrossRefGoogle Scholar
  34. 34.
    Habenicht, W.: Quad trees, a data structure for discrete vector optimization problems. Lect. Note. Econom. Math. Sys. 209, 136–145 (1983)Google Scholar
  35. 35.
    Sun, M., Steuer, R.E.: Quad trees and linear list for identifying nondominated criterion vectors. INFORM J. Computing 8, 367–375 (1996)zbMATHCrossRefGoogle Scholar
  36. 36.
    Sun, M.: A primogenitary linked quad tree data structure and its application to discrete multiple criteria optimization. Ann. Oper. Res. 147, 87–107 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Chiang, W., Russell, R.: A reactive tabu search metaheuristic for the vehicle routing problem with time windows. INFORMS J. Computing 9, 417–430 (1997)zbMATHCrossRefGoogle Scholar
  38. 38.
    Cordeau, J., Gendreau, M., Laporte, G.: A tabu search heuristic for periodic and multi-depot vehicle routing problems. Networks 30, 105–119 (1997)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yujun Zheng
    • 1
  1. 1.Institute of SoftwareChinese Academy of SciencesBeijingChina

Personalised recommendations