Advertisement

Kernelization for Cycle Transversal Problems

  • Ge Xia
  • Yong Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6124)

Abstract

We present new kernelization results for the s -cycle transversal problem for s > 3. In particular, we show a 6k 2 kernel for 4-cycle transversal and a O(k s − 1) kernel for s -cycle transversal when s > 4. We prove the NP-completeness of s -cycle transversal on planar graphs and obtain a 74k kernel for 4-cycle transversal on planar graphs. We also give several kernelization results for a related problem ( ≤ s)-cycle transversal.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abu-Khzam, F.N.: Kernelization algorithms for d-hitting set problems. In: WADS, pp. 434–445 (2007)Google Scholar
  2. 2.
    Alon, N.: Bipartite subgraphs. Combinatorica 16, 301–311 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.M.: (meta) kernelization. In: Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science (2009)Google Scholar
  4. 4.
    Borodin, O.V., Kostochka, A.V., Sheikh, N.N., Yu, G.: M-degrees of quadrangle-free planar graphs. J. Graph Theory 60(1), 80–85 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Brügmann, D., Komusiewicz, C., Moser, H.: On generating triangle-free graphs. Electronic Notes in Discrete Mathematics 32, 51–58 (2009)CrossRefGoogle Scholar
  6. 6.
    Cherlin, G., Komjáth, P.: There is no universal countable pentagon-free graph. J. Graph Theory 18(4), 337–341 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)Google Scholar
  8. 8.
    Esperet, L., Montassier, M., Zhu, X.: Adapted list coloring of planar graphs. J. Graph Theory 62(2), 127–138 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Fernau, H.: Speeding up exact algorithms with high probability. Electronic Notes in Discrete Mathematics 25, 57–59 (2006)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Füredi, Z.: On the number of edges of quadrilateral-free graphs. J. Comb. Theory Ser. B 68(1), 1–6 (1996)zbMATHCrossRefGoogle Scholar
  11. 11.
    Füredi, Z., Naor, A., Verstraete, J.: On the turan number for the hexagon. Advances in Mathematics 203(2), 476–496 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. SIGACT News 38(1), 31–45 (2007)CrossRefGoogle Scholar
  13. 13.
    Guo, J., Niedermeier, R.: Linear problem kernels for NP-hard problems on planar graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 375–386. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Györi, E., Lemons, N.: Hypergraphs with no odd cycle of given length. Electronic Notes in Discrete Mathematics 34, 359–362 (2009)CrossRefGoogle Scholar
  15. 15.
    Halford, T.R., Grant, A.J., Chugg, K.M.: Which codes have 4-cycle-free tanner graphs? IEEE Transactions on Information Theory 52(9), 4219–4223 (2006)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2-epsilon. J. Comput. Syst. Sci. 74(3), 335–349 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Kortsarz, G., Langberg, M., Nutov, Z.: Approximating maximum subgraphs without short cycles. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008. LNCS, vol. 5171, pp. 118–131. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Krivelevich, M.: On a conjecture of tuza about packing and covering of triangles. Discrete Math. 142(1-3), 281–286 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Veni Madhavan, C.E.: Foundations of Software Technology and Theoretical Computer Science, vol. 181, pp. 381–392. Springer, Heidelberg (1984)Google Scholar
  20. 20.
    Moser, H.: A problem kernelization for graph packing. In: Nielsen, M., Kucera, A., Miltersen, P.B., Palamidessi, C., Tuma, P., Valencia, F.D. (eds.) SOFSEM 2009. LNCS, vol. 5404, pp. 401–412. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Naor, A., Verstraëte, J.: A note on bipartite graphs without 2k-cycles. Comb. Probab. Comput. 14(5-6), 845–849 (2005)zbMATHCrossRefGoogle Scholar
  22. 22.
    Thomassen, C.: On the chromatic number of triangle-free graphs of large minimum degree. Combinatorica 22(4), 591–596 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Thomassen, C.: On the chromatic number of pentagon-free graphs of large minimum degree. Combinatorica 27(2), 241–243 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Yannakakis, M.: Node-and edge-deletion NP-complete problems. In: STOC, pp. 253–264 (1978)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ge Xia
    • 1
  • Yong Zhang
    • 2
  1. 1.Department of Computer ScienceLafayette CollegeEaston
  2. 2.Department of Computer ScienceKutztown UniversityKutztown

Personalised recommendations