Varieties of Regularities in Weighted Sequences

  • Hui Zhang
  • Qing Guo
  • Costas S. Iliopoulos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6124)


A weighted sequence is a string in which a set of characters may appear at each position with respective probabilities of occurrence. A common task is to identify repetitive motifs in weighted sequences, with presence probability not less than a given threshold. We consider the problems of finding varieties of regularities in a weighted sequence. Based on the algorithms for computing all the repeats of every length by using an iterative partitioning technique, we also tackle the all-covers problem and all-seeds problem. Both problems can be solved in O(n 2) time.


Equivalence Class Weighted Sequence Biological Sequence Respective Probability Real Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brodal, G.S., Lyngsø, R.B., Pedersen, C.N.S., Stoye, J.: Finding Maximal Pairs with Bounded Gap. Journal of Discrete Algorithms, Special Issue of Matching Patterns 1(1), 77–104 (2000)Google Scholar
  2. 2.
    Christodoulakis, M., Iliopoulos, C.S., Mouchard, L., Perdikuri, K., Tsakalidis, A., Tsichlas, K.: Computation of repetitions and regularities on biological weighted sequences. Journal of Computational Biology 13(6), 1214–1231 (2006)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Christodoulakis, M., Iliopoulos, C.S., Perdikuri, K., Tsichlas, K.: Searching the regularities in weighted sequences. In: Proc. of the International Conference of Computational Methods in Science and Engineering. Lecture Series on Computer and Computational Sciences, pp. 701–704. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Crochemore, M.: An Optimal Algorithm for Computing the Repetitions in a Word. Information Processing Letter 12(5), 244–250 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Franêk, F., Smyth, W.F., Tang, Y.: Computing All Repeats Using Suffix Arrays. Journal of Automata, Languages and Combinatorics 8(4), 579–591 (2003)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Guo, Q., Zhang, H., Iliopoulos, C.S.: Computing the λ-covers of a string. Information Sciences 177(19), 3957–3967 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  8. 8.
    Iliopoulos, C.S., Makris, C., Panagis, Y., Perdikuri, K., Theodoridis, E., Tsakalidis, A.: Efficient Algorithms for Handling Molecular Weighted Sequences. IFIP Theoretical Computer Science 147, 265–278 (2004)Google Scholar
  9. 9.
    Iliopoulos, C.S., Moore, D.W.G., Park, K.: Covering a String. Algorithmica 16, 288–297 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Iliopoulos, C.S., Mouchard, L., Perdikuri, K., Tsakalidis, A.: Computing the repetitions in a weighted sequence. In: Proc. of the 8th Prague Stringology Conference (PSC 2003), pp. 91–98 (2003)Google Scholar
  11. 11.
    Iliopoulos, C.S., Perdikuri, K., Zhang, H.: Computing the regularities in biological weighted sequence. In: String Algorithmics. NATO Book series, pp. 109–128 (2004)Google Scholar
  12. 12.
    Li, Y., Smyth, W.F.: Computing the Cover Array in Linear Time. Algorithmica 32(1), 95–106 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Ohno, S.: Repeats of base oligomers as the primordial coding sequences of the primeval earth and their vestiges in modern genes. Journal of Molecular Evolution 20, 313–321 (1984)CrossRefGoogle Scholar
  14. 14.
    Zhang, H., Guo, Q., Iliopoulos, C.S.: Algorithms for Computing the λ-regularities in Strings. Fundamenta Informaticae 84, 33–49 (2008)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Zhang, H., Guo, Q., Iliopoulos, C.S.: Loose and strict repeats in weighted sequences. In: Proc. of the International Conference on Intelligent Computing, ICIC 2009 (accepted 2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Hui Zhang
    • 1
  • Qing Guo
    • 2
  • Costas S. Iliopoulos
    • 3
  1. 1.College of Computer Science and TechnologyZhejiang University of TechnologyHangzhouChina
  2. 2.College of Computer Science and EngineeringZhejiang UniversityHangzhouChina
  3. 3.Department of Computer ScienceKing’s College London StrandLondonEngland

Personalised recommendations