Advertisement

A Primal-Dual Approximation Algorithm for the k-Level Stochastic Facility Location Problem

  • Zhen Wang
  • Donglei Du
  • Dachuan Xu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6124)

Abstract

We present a combinatorial primal-dual 7-approximation algorithm for the k-level stochastic facility location problem, the stochastic counterpart of the standard k-level facility location problem. This approximation ratio is slightly worse than that of the primal-dual 6-approximation for the standard k-level facility location problem [3] because of the extra stochastic assumption. This new result complements the recent non-combinatorial 3-approximation algorithm for the same problem by Wang et al [21].

Keywords

Facility location Approximation algorithm Primal-dual 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aardal, K.I., Chudak, F., Shmoys, D.B.: A 3-approximation algorithm for the k-level uncapacitated facility location problem. Information Processing Letters 72, 161–167 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Ageev, A., Ye, Y., Zhang, J.: Improved combinatorial apporximation algorithms for the k-level facility location problem. SIAM Journal on Discrete Mathematics 18(1), 207–217 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bumb, A., Kern, W.: A simple dual ascent algorithm for the multilevel facility location problem. In: Proceedings of APPROX-RANDOM, pp. 55–63 (2001)Google Scholar
  4. 4.
    Byrka, J., Aardal, K.I.: An optimal bifactor approximation algorithm for the metric uncapacitated facility location problem. SIAM Journal on Computing (to appear)Google Scholar
  5. 5.
    Chen, X., Chen, B.: Approximation algorithms for soft-capacitated facility location in capacitated network design. Algorithmica 53(3), 263–297 (2007)CrossRefGoogle Scholar
  6. 6.
    Chudak, F., Shmoys, D.B.: Improved approxiamtion algorithms for the uncapaciteted facility location problem. SIAM Journal on Computing 33(1), 1–25 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gabor, A.F., van Ommeren, J.-K.C.W.: A new approximation algorithm for the multilevel facility location problem. Discrete Applied Mathematics 158(5-6), 453–460 (2010)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Guha, S., Khuller, S.: Greedy strike back: Improved facility location algorithms. Journal of Algorithms 31, 228–248 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.: Greedy facility location algorithm analyzed using dual fitting with factor-revealing LP. Jounal of the ACM 50, 795–824 (2003)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location and k-median problems using the primal-dual schema and Lagrangian relaxation. Journal of the ACM 48, 274–296 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Mahdian, M.: Facility location and the analysis of algorithms through factor-revealing programs, Ph. D. thesis, MIT, Cambridge, MA (2004)Google Scholar
  12. 12.
    Mahdian, M., Ye, Y., Zhang, J.: Approximation algorithms for metric facility location problems. SIAM Journal on Computing 36(2), 411–432 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Ravi, R., Sinha, A.: Hedging uncertainty: approximation algorithhms for stochastic optimization problems. Mathematical Programming 108, 97–114 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Schrijver, A.: Combinatorial optimization: Polyhedra and Efficiency. In: Algorithms and Combinatorics, vol. 24(A). Springer, New York (2003)Google Scholar
  15. 15.
    Shmoys, D.B., Swamy, C.: An approximation scheme for stochastic linear programming and its application to stochastic integer programs. Journal of the ACM 53, 978–1012 (2006)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Shmoys, D.B., Tardös, E., Aardal, K.I.: Approximation algorithms for facility location problems. In: Proceedings of STOC, pp. 265–274 (1997)Google Scholar
  17. 17.
    Shu, J.: An efficient greedy heuristic for warehouse-retailer network design optimization. Transportation Science, doi:10.1287/trsc.1090.0302Google Scholar
  18. 18.
    Shu, J., Ma, Q., Li, S.: Integrated location and two-echelon inventory network design under uncertainty. Annals of Operations Research, doi:10.1007/s10479-010-0732-zGoogle Scholar
  19. 19.
    Shu, J., Teo, C.P., Max Shen, Z.J.: Stochastic transportation-inventory network design problem. Operations Research 53, 48–60 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Srinivasan, A.: Approximation algorithms for stochastic and risk-averse optimization. In: Proceedings of SODA, pp. 1305–1313 (2007)Google Scholar
  21. 21.
    Wang, Z., Du, D., Gabor, A., Xu, D.: An approximation algorithm for the k-level stochastic facility location problem. Operations Research Letters, doi:10.1016/j.orl.2010.04.010Google Scholar
  22. 22.
    Ye, Y., Zhang, J.: An approximation algorithm for the dynamic facility location problem. In: Combinatorial Optimization in Communication Networks, pp. 623–637. Kluwer Academic Publishers, Dordrecht (2005)Google Scholar
  23. 23.
    Zhang, J.: Approximating the two-level facility location problem via a quasi-greedy approach. Mathematical Programming 108, 159–176 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Zhang, J., Chen, B., Ye, Y.: A multiexchange local search algorithm for the capacitated facility location problem. Mathematics of Operations Research 30(2), 389–403 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Zhang, P.: A new approximation algorithm for the k-facility location problem. Theoretical Computer Science 384(1), 126–135 (2007)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Zhen Wang
    • 1
  • Donglei Du
    • 2
  • Dachuan Xu
    • 1
  1. 1.Department of Applied MathematicsBeijing University of TechnologyBeijingP.R. China
  2. 2.Faculty of Business AdministrationUniversity of New BrunswickFrederictonCanada

Personalised recommendations